
ROS2 Tutorial
Release October 03, 2023

Murilo M. Marinho

Oct 03, 2023

PREAMBLE

1 Ubuntu Terminal Basics 3
1.1 Who cares about the terminal anyways, are you like 100 years old or something? 3
1.2 The terminal . 3
1.3 Let’s use it. (!?) . 4
1.4 bash redirections . 5
1.5 Tab completion . 6
1.6 Be careful with sudo . 6
1.7 Be careful even when not using sudo . 7
1.8 File permissions . 7
1.9 nautilus: browsing files with a GUI . 7

2 Python Basics 9
2.1 Installing Python on Ubuntu . 9
2.2 Editing Python source (with PyCharm) . 12
2.3 (Murilo’s) Python Best Practices . 13
2.4 Python’s asyncio . 24
2.5 Making your Python package installable . 32

3 ROS2 Installation 37
3.1 Update apt packages . 37
3.2 Install a few pre-requisites . 37
3.3 Add ROS2 sources . 38
3.4 Install ROS2 packages . 38
3.5 Set up system environment to find ROS2 . 38
3.6 Check if it works . 38

4 Terminator is life 41
4.1 Shortcuts . 41
4.2 OK, but what if shortcuts scare me . 42

5 Workspace setup 45
5.1 Setting up . 45
5.2 First build . 45

6 Create packages (ros2 pkg create) 47

7 Creating a Python package (for ament_python) 49

8 Creating a Python Node with a template (for ament_python) 51

9 Always source after you build 53

i

10 Running a node (ros2 run) 55

11 Using PyCharm for ROS2 sources 57
11.1 Running a Node from PyCharm . 57
11.2 What to do when PyCharm does not find the dependencies . 58

12 Creating a Python Node from scratch (for ament_python) 59
12.1 Handling dependencies (package.xml) . 59
12.2 After you modify the workspace, build it once . 60
12.3 Creating the Node . 60
12.4 Making ros2 run work . 62

13 The Python Node, explained 65
13.1 The imports . 65
13.2 Making a subclass of Node . 65
13.3 Use a Timer for periodic work (when using rclpy.spin()) . 66
13.4 Where the ROS2 magic happens: rclpy.init() and rclpy.spin() 66
13.5 Have a try-catch block for KeyboardInterrupt . 67
13.6 Document your code with Docstrings . 67

14 Creating a Python Library (for ament_python) 69
14.1 The folders/files, Mason, what do they mean? . 70
14.2 Overview of the library . 71
14.3 Create the sample function . 71
14.4 Create the sample class . 72
14.5 Modify the __init__.py to export the symbols . 72
14.6 Modify the setup.py to export the packages . 72
14.7 Build and source . 73

15 Using a Python Library from another package (for ament_python) 75
15.1 The sample Node . 76
15.2 Build and source . 78
15.3 Run . 78

16 Messages and Services (ros2 interface) 79
16.1 Description . 79
16.2 Getting info on interfaces . 79
16.3 Messages . 81
16.4 Services . 82

17 Creating a dedicated package for custom interfaces 83
17.1 Creating the package . 83
17.2 The package.xml dependencies . 84
17.3 The message folder . 85
17.4 The message file . 85
17.5 The service folder . 85
17.6 The service file . 85
17.7 The CMakeLists.txt directives . 86
17.8 What to do when adding new interfaces? . 87
17.9 Build and source . 88
17.10 Getting info on custom interfaces . 88

18 Publishers and Subscribers: using messages 91
18.1 Create the package . 91
18.2 Overview . 91

ii

18.3 Create the Node with a publisher . 92
18.4 Create the Node with a subscriber . 94
18.5 Update the setup.py . 96
18.6 Build and source . 97
18.7 Testing Publisher and Subscriber . 97

19 Inspecting topics (ros2 topic) 99
19.1 Start a publisher . 100
19.2 Getting all topics with ros2 topic list . 100
19.3 grep is your new best friend . 100
19.4 Getting quick info with ros2 topic info . 101
19.5 Checking topic contents with ros2 topic echo . 101
19.6 grep is still your best friend . 102
19.7 Measuring publishing frequency with ros2 topic hz . 102
19.8 Stop the publisher . 103
19.9 Start the subscriber and get basic info . 103
19.10 Testing your subscribers with ros2 topic pub . 103

20 At your Service: Servers and Clients 105
20.1 Create the package . 105
20.2 Overview . 105
20.3 Create the Node with a Service Server . 105
20.4 Service Clients . 108
20.5 Create the Node with a Service Client (using a callback) . 109
20.6 Update the setup.py . 114
20.7 Build and source . 115
20.8 Testing Service Server and Client . 115

21 Inspecting services (ros2 service) 117
21.1 Start a service server . 117
21.2 Getting all services with ros2 service list . 118
21.3 Testing your service servers with ros2 service call . 118
21.4 Testing your service clients??? . 119

22 Parameters: creating configurable Nodes 121
22.1 Create the package . 121
22.2 Overview . 121
22.3 Create the Node using parameters . 122
22.4 Don’t forget to declare the parameter! . 124
22.5 One-off parameters . 124
22.6 Continuously-obtained parameters . 124
22.7 Truly configurable: using _launch.py files . 125
22.8 (Once) create the launch folder . 125
22.9 Create the launch file . 126
22.10 The setup.py . 127
22.11 Build and source . 128

23 Launch configurable Nodes (ros2 launch) 129

24 Inspecting parameters (ros2 param) 131
24.1 Launching the Node with parameters . 132
24.2 List-up parameters with ros2 param list . 132
24.3 Obtain parameters with ros2 param get . 132
24.4 Let’s check the output of the Node . 133
24.5 Assign values to parameters with ros2 param set . 133

iii

24.6 Save parameters to a file with ros2 param dump . 134
24.7 Load parameters from a file with ros2 param load . 135

25 Forbidden topics 137
25.1 Doing all that C++ stuff with ament_cmake . 137

26 Frequently asked questions (FAQ) 161
26.1 You got the name wrong, it’s ROS 2 not ROS2 . 161
26.2 It’s not Linux, it’s GNU/Linux: Keep all grievances in #vent . 162
26.3 The difference between Python scripts and modules . 163
26.4 The difference between Python modules and packages . 163

27 Warnings 165

28 Disclaimers 167

iv

ROS2 Tutorial, Release October 03, 2023

Note: If you’re looking for the official documentation, this is NOT it. For the official ROS documentation, refer to
this link.

Hint: You can download this tutorial as a PDF .

About this tutorial

ROS2 Humble tutorials by Murilo M. Marinho, focusing on Ubuntu 22.04 x64 LTS and the programming practices of
successful state-of-the-art robotics implementations such as the SmartArmStack and the AISciencePlatform.

Using this tutorial

This is a tutorial that supposes that the user will follow it linearly. Some readers can skip the Preamble if they are
somewhat already comfortable in Python and Ubuntu. Otherwise, all steps can be considered as dependent on the prior
ones, starting from ROS2 Setup.

Quick overview

1. Preamble: Ubuntu Basics
A few tips on Ubuntu/terminal usage.

2. Preamble: Python Basics
A quick memory refresher for the Python stuff we’ll use in ROS2.

3. ROS2 Setup (start here)
Installing ROS2 and setting up its environment for use.

4. ROS2 Python Package/Build Basics
Creating our first ROS2 package with ament_python and building it with colcon.

5. ROS2 Python Node Basics
Creating a rclpy Node and figuring out what all that means.

6. ROS2 Python Library Basics
Create a Python library and importing/using it in another ament_python package.

7. ROS2 Python Interface Basics
Making ROS2 messages, services, publishers, subscribers, service servers, and service clients.

8. ROS2 Parameter/Launch Basics
Making configurable ROS2 Nodes using parameters and launch files.

Note: This section is optional, the ROS2 tutorial starts at ROS2 Installation.

PREAMBLE 1

https://docs.ros.org
https://ros2-tutorial.readthedocs.io/_/downloads/en/latest/pdf/
https://docs.ros.org/en/humble/
https://murilomarinho.info/
https://github.com/SmartArmStack
https://github.com/AISciencePlatform

ROS2 Tutorial, Release October 03, 2023

2 PREAMBLE

CHAPTER

ONE

UBUNTU TERMINAL BASICS

You already know how to turn on your computer and press some keys to make bits flip and colorful pixels shine on
your monitor. Here, we’ll go through a few tips on Ubuntu.

Note: The world is full of smart people, and they’ve done some amazing stuff, like Ubuntu and Linux. There are
endless tutorials for those and this is not a complete one. In this section, we’ll go through some basic tools available in
Ubuntu’s terminal that help with our quest to learn/use ROS2.

1.1 Who cares about the terminal anyways, are you like 100 years old
or something?

Besides the unintended upside that if you’re typing into a terminal fast enough with a black hoodie, you’re cosplaying
Mr. Robot at a very low cost, there wouldn’t be another way to make a tutorial like this within the current age of the
Universe without relying on Ubuntu’s terminal.

GUIs (Graphical User Interfaces) change faster than long tutorials like this one can keep up with and terminal is our
reliable partner in crime and unlikely to change much in the foreseeable future.

For the whole tutorial, you can copy and paste the commands in terminal. If it doesn’t work, it’s either your fault or
mine, but surely not the terminal‘s.

1.2 The terminal

Note: Check out Canonical’s Tutorial on terminal for the complete story.

Hint: You can open a new terminal window by pressing CTRL+ALT+T.

Warning: This section is about the default terminal in Ubuntu 22.04. If you prefer to use some other terminal
instead (there are many), then this might not be useful to you, and you might be happier referring to its documentation
instead.

The terminal is one of those things with many names. Some call it shell, some console, some command line,
some terminal. I’m sure there’s someone furiously typing right now saying that I’m wrong and describing in detail

3

https://www.imdb.com/title/tt4158110/
https://ubuntu.com/tutorials/command-line-for-beginners

ROS2 Tutorial, Release October 03, 2023

what those differences might be. The truth is that, in the wild (a.k.a. the Internet), those terms are used pretty much as
synonyms.

For all intents and purposes, Tom Hanks is not stuck in this terminal. Instead, we use it to send commands to Ubuntu
and make stuff happen.

Table 1: (Murilo’s) List of Useful Command Line Programs

Pro-
gram

Example usage What it does

pwd pwd Outputs the absolute path to the current directory.
mkdir mkdir a_folder Makes a directory called a_folder in the current directory.
cd cd a_folder Changes directory to a specified target.
touch touch a_file.whatever Creates an empty file called a_file.whatever.
cat cat a_file.whatever Outputs into the console the contents of a_file.whatever.
rm rm a_file.whatever Removes a file or directory (with the -r option).
ls ls Lists the contents of the current directory.
grep cat a_file.whatever |

grep robocop
Outputs the lines of a_file.whatever that contain the string
robocop.

nano nano a_file.whatever Helps you edit a file using a (relatively?) user-friendly program so that
you don’t get stuck into vim.

sudo sudo touch
a_sudo_made_file.
whatever

With the powers of a super user, do something. It allows a given user
to modify sensitive files in Ubuntu.

apt sudo apt install git Installs Ubuntu packages, in this case, git.
alias alias say_hello="echo

hello"
Creates an alias for a command, i.e. another way to refer to it.

1.3 Let’s use it. (!?)

The thing is, we’ll be using the terminal throughout the entire tutorial, so don’t worry about going too deep right now.

To warm up, let’s start by creating an empty file inside a new directory, as follows

Hint: The path ~ stands for the currently logged-in user’s home folder.

Hint: You can open a new terminal window by pressing CTRL+ALT+T.

Warning: For copying from the terminal use CTRL+SHIFT+C. For pasting to the terminal, use CTRL+SHIFT+V.
Be careful with CTRL+C, in particular. It is used to, in simple terms, close running programs on the terminal.

cd ~
mkdir a_folder
cd a_folder
touch an_empty_file.txt

Then, we can use nano to create another file with some contents

4 Chapter 1. Ubuntu Terminal Basics

https://stackoverflow.blog/2017/05/23/stack-overflow-helping-one-million-developers-exit-vim/
https://dictionary.cambridge.org/dictionary/english/alias

ROS2 Tutorial, Release October 03, 2023

nano file_with_stuff.txt

Then, nano will run. At this point we can start typing, so let’s just type

stuff

then you can exit with the following keys

1. CTRL+X

2. Y

3. ENTER

you can also look at the bottom side of the window to know what keys to press. As an example, in nano, ^X stands for
CTRL+X.

Then, if you run

ls

the output will be

an_empty_file.txt file_with_stuff.txt

we can, for example, get the contents of file_with_stuff.txt with

cat file_with_stuff.txt

whose output will be

stuff

So, enough of this example, let’s get rid of everything with

Warning: ALWAYS be careful when using rm. The files removed this way do NOT go to the trash can, if you use
it you pretty much said bye bye bye to those files/directories.

cd ~
rm -r a_folder

1.4 bash redirections

Hint: Before defaulting to writing a 300-lines-long Python script for the simplest and most common of tasks, it is
always good to check if there is something already available in bash that can do the same thing in an easier and more
stable way.

In a time long long ago, before ChatGPT became the new Deep Magic, bash was already tilting heads and leaving
Ubuntu users in awe.

Among many powerful features, the redirection operator, >, stands out. It can be used to, unsurprisingly, redirect the
output of a command to a file.

1.4. bash redirections 5

https://unix.stackexchange.com/questions/10883/where-do-files-go-when-the-rm-command-is-issued
https://www.youtube.com/watch?v=Eo-KmOd3i7s
https://www.youtube.com/watch?v=Vd6hVYkkq88

ROS2 Tutorial, Release October 03, 2023

Warning: The operator > overwrites the target file with the output of the preceding command, it does not ask for
permission, it just goes and does it.

The operator >> appends to the target file with the output of the preceding command.

Don’t mix these up, there is no way to undo.

For example, if we want to store the result of the command ls to a file called result_of_ls.txt, the following will
do

cd ~
ls > result_of_ls.txt

As a default in this version of Ubuntu, if the file does not exist it is created.

1.5 Tab completion

Hint: Use TAB completion extensively.

Whenever I have to look at a novice’s shoulders while they interact with the terminal it gives me a certain level of
anxiety. That is because they are trying to perfectly type even the longest and meanest paths for files, directories, and
programs.

The terminal has TAB completion, so use it extensively. You can press TAB at any time to complete the name of a
program, folder, file, or pretty much anything.

For example, we can move to a folder

cd ~

Then type a partial command or a part of its arguments. For example,

rm result_o

then, by pressing TAB, it should autocomplete to

rm result_of_ls.txt

1.6 Be careful with sudo

Warning: DO NOT, I repeat, DO NOT play around with sudo.

With great power, comes great opportunity to destroy your Ubuntu. It turns out that sudo is the master key of destruc-
tion, it will allow you to do basically anything in the system as far as the software is concerned.

So, don’t.

For these tutorials, only use sudo when installing system-wide packages. Otherwise, do not use it.

6 Chapter 1. Ubuntu Terminal Basics

ROS2 Tutorial, Release October 03, 2023

1.7 Be careful even when not using sudo

With regular user privileges, the major system folders will be protected from tampering. However, our home folder,
e.g. /home/<YOU> will not. In our home folder, we are the lords, so a mistake can be fatal for your files/directories.

1.8 File permissions

Warning: DO NOT, I repeat, DO NOT play around with sudo, chmod, or chown.

One of the reasons that using sudo indiscriminately will destroy your Ubuntu is file permissions. For example, if you
simply open a file and save it as sudo, you’ll change its permissions, and that might be enough to even block you from
logging into Ubuntu via the GUI (Graphics User Interface).

I will not get into detail here about programs to change permissions because we won’t need them extensively in these
tutorials. However, it is important to be aware that this exists and might cause problems.

1.9 nautilus: browsing files with a GUI

To some extent similar to explorer in Windows and finder in macOS, nautilus is the default file manager in
Ubuntu.

One tip is that it can be opened from the terminal as well, so that you don’t have to find whatever folder you are again.
For example,

Hint: The path . means the current folder.

cd ~
nautilus .

will open the currently logged-in user’s home folder in nautilus.

Note: This section is optional, the ROS2 tutorial starts at ROS2 Installation.

1.7. Be careful even when not using sudo 7

https://www.youtube.com/watch?v=DDfPwaWwrII
https://help.ubuntu.com/community/FilePermissions
https://manpages.ubuntu.com/manpages/jammy/en/man1/nautilus.1.html
https://manpages.ubuntu.com/manpages/jammy/en/man1/nautilus.1.html

ROS2 Tutorial, Release October 03, 2023

8 Chapter 1. Ubuntu Terminal Basics

CHAPTER

TWO

PYTHON BASICS

Note: This section is optional, the ROS2 tutorial starts at ROS2 Installation.

2.1 Installing Python on Ubuntu

Warning: If you change or try to tinker with the default Python version of Ubuntu, your system will most likely
BREAK COMPLETELY. Do not play around with the default Python installation, because Ubuntu depends on it
to work properly (or work at all).

In Ubuntu 22.04, Python is already installed! In fact, Ubuntu would not work without it. Let’s check its version by
running

python3 --version

which should output

Python 3.10.6

If the 3.10 part of your version is different (e.g. 3.9 or 3.11), get this fixed because this tutorial will not work for you.

Warning: Note that the command is python3 and not python. In fact, the result of

python

is
Command 'python' not found, did you mean:

command 'python3' from deb python3
command 'python' from deb python-is-python3

9

ROS2 Tutorial, Release October 03, 2023

2.1.1 A quick Python check

Run

python3

which should output something similar to

Python 3.10.6 (main, Mar 10 2023, 10:55:28) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

in particular, if the GCC 11 is different, e.g. GCC 9 or GCC 12, then get this fixed because this tutorial will not work
for you.

As you already know, to exit the interative shell you can use CTRL+D or type quit() and press ENTER.

2.1.2 Some Python packages must be installed through apt

Warning: Aside from these packages that you MUST install from apt, it is best to use venv and pip to install
packages only for your user without using sudo.

For some Python packages to work well with the default Python in Ubuntu, they must be installed through apt. If you
deviate from this, you can cause issues that might not be easy to recover from.

For the purposes of this tutorial, let us install pip and venv

sudo apt install -y python3-pip python3-venv

2.1.3 When you want to isolate your environment, use venv

Warning: At the time of this writing, there was no support for venv on ROS2 (More info). Until that is handled,
we are not going to use venv for the ROS2 tutorials. However, we will use venv to protect our ROS2 environment
from these Python preamble tutorials.

Using venv (More info) is quite straightforward.

Create a venv

cd ~
python3 -m venv ros2tutorial_venv

where the only argument, ros2tutorial_venv, is the name of the folder in which the venv will be created.

10 Chapter 2. Python Basics

https://docs.python.org/3.10/tutorial/interpreter.html
https://github.com/ros2/ros2/issues/1094#issuecomment-897638520
https://docs.python.org/3.10/library/venv.html

ROS2 Tutorial, Release October 03, 2023

Activate a venv

Whenever we want to use a venv, it must be explicitly activated.

cd ~
source ros2tutorial_venv/bin/activate

The terminal will change to have the prefix (ros2tutorial_venv) to let us know that we are using a venv, as follows

(ros2tutorial_venv) murilo@murilos-toaster:~$

Deactivate a venv

To deactivate, run

deactivate

We’ll know that we’re no longer using the ros2tutorial_venv because the prefix will disappear back to

murilo@murilos-toaster:~$

2.1.4 Installing libraries

Warning: In these tutorials, we rely either on apt or pip to install packages. There are other package managers
for Python and plenty of other ways to install and manage packages. They are, in general, not compatible with each
other so, like cleaning products, DO NOT mix them.

Hint: Using python3 -m pip instead of calling just pip allows more control over which version of pip is being
called. The need for this becomes more evident when several Python versions have to coexist in a system.

As an example, let us install the best robot modeling and control library ever conceived, DQ Robotics.

First, we activate the virtual environment

cd ~
source ros2tutorial_venv/bin/activate

then, we install

python3 -m pip install dqrobotics

which will result in something similar to (might change depending on future versions)

Collecting dqrobotics
Downloading dqrobotics-23.4.0a15-cp310-cp310-manylinux1_x86_64.whl (551 kB)

-- 551.4/551.4 KB 6.3 MB/s eta 0:00:00
Collecting numpy
Downloading numpy-1.25.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl␣

→˓(17.6 MB)
(continues on next page)

2.1. Installing Python on Ubuntu 11

https://github.com/dqrobotics

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

-- 17.6/17.6 MB 7.4 MB/s eta 0:00:00
Installing collected packages: numpy, dqrobotics
Successfully installed dqrobotics-23.4.0a15 numpy-1.25.0

2.1.5 Removing libraries (installed with pip)

We can remove the library we just installed with

python3 -m pip uninstall dqrobotics

resulting in

Found existing installation: dqrobotics 23.4.0a15
Uninstalling dqrobotics-23.4.0a15:
Would remove:
/home/murilo/ros2tutorial_venv/lib/python3.10/site-packages/dqrobotics-23.4.0a15.

→˓dist-info/*
/home/murilo/ros2tutorial_venv/lib/python3.10/site-packages/dqrobotics/*

Proceed (Y/n)?

Hint: If in the terminal a question is made, the option with an uppercase letter, in this case Y, will be the default. If
you want the default, just press ENTER.

Then, press ENTER, which results in

Successfully uninstalled dqrobotics-23.4.0a15

2.1.6 When using pip, do NOT use sudo

Using sudo without knowing what one is doing is the easiest way to wreak havoc in a Ubuntu installation. Even seem-
ingly innocuous operations such as copying files with sudo can cause irreparable damage to your Ubuntu environment.

When installing Python packages that are not available on apt, use pip.

Note: This section is optional, the ROS2 tutorial starts at ROS2 Installation.

2.2 Editing Python source (with PyCharm)

There are near-infinite ways to manage your Python code and, for this tutorial, we will use PyCharm. Namely, the free
community version.

12 Chapter 2. Python Basics

ROS2 Tutorial, Release October 03, 2023

2.2.1 Installing PyCharm

PyCharm is a great program for managing one’s Python sources that is frequently updated and has a free edition.
However, precisely because it is frequently updated, there is no way for this tutorial to keep up with future changes.

What we will do, instead, is to download a specific version of PyCharm for these tutorials, so that its behav-
ior/looks/menus are predictable. If you’d prefer using the shiniest new version, be sure to wear sunglasses and not
stare directly into the light.

Run

cd ~
mkdir ros2_workspace_pycharm
cd ros2_workspace_pycharm
wget https://download.jetbrains.com/python/pycharm-community-2023.1.1.tar.gz
tar -xzvf pycharm-community-2023.1.1.tar.gz

2.2.2 Create an alias for pycharm_ros2

To simplify the use of this version of PyCharm, let us create a bash alias for it.

echo "# Alias for PyCharm, as instructed in https://ros2-tutorial.readthedocs.io" >> ~/.
→˓bashrc
echo "alias pycharm_ros2=~/ros2_workspace_pycharm/pycharm-community-2023.1.1/bin/pycharm.
→˓sh" >> ~/.bashrc
source ~/.bashrc

Then, you can run PyCharm with

pycharm_ros2

Note: This section is optional, the ROS2 tutorial starts at ROS2 Installation.

2.3 (Murilo’s) Python Best Practices

Warning: This tutorial expects prior knowledge in Python and object-oriented programming. As such, this section
is not meant to be a comprehensive Python tutorial. You have better resources made by smarter people available
online, e.g. The Python Tutorial.

2.3.1 Terminology

Let’s go through the Python terminology used in this tutorial. This terminology is not necessarily uniform with other
sources/tutorials you might find elsewhere. It is based on my interpretation of The Python Tutorial on Modules, the
Python Glossary, and my own experience.

2.3. (Murilo’s) Python Best Practices 13

https://docs.python.org/3.10/tutorial/index.html
https://docs.python.org/3.10/tutorial/modules.html
https://docs.python.org/3.10/glossary.html

ROS2 Tutorial, Release October 03, 2023

Table 1: (Murilo’s) Python Glossary

Term Book Definition Use in the wild
script A Python file that can be

executed.
Any Python file meant to be executed.

mod-
ule

A file with content that
is meant to be imported
by other modules and
scripts.

This term is used very loosely and can basically mean any Python file, but usually
a Python file meant to be imported from.

pack-
age

A collection of modules. A folder with an __init__.py, even if it doesn’t have more than one module.
When people say Python Packaging it refers instead to making your package
installable (e.g. with a setup.py or pyproject.toml), so be ready for that
ambiguity.

2.3.2 Use a venv

We already know that it is a good practice to When you want to isolate your environment, use venv. So, let’s turn that
into a reflex and do so for this whole section.

cd ~
source ros2tutorial_venv/bin/activate

2.3.3 Minimalist package: something to start with

In this step, we’ll work on these.

python/minimalist_package/
minimalist_package/

__init__.py

First, let’s make a folder for our project

Hint: The -p option for mkdir creates all parent folders as well, when they do not exist.

mkdir -p ~/ros2_tutorials_preamble/python/minimalist_package

Then, let’s create a folder with the same name within it for our package. A Python package is a folder that has an
__init__.py, so for now we add an empty __init__.py by doing so

cd ~/ros2_tutorials_preamble/python/minimalist_package
mkdir minimalist_package
cd minimalist_package
touch __init__.py

The (empty) package is done!

14 Chapter 2. Python Basics

https://packaging.python.org/en/latest/

ROS2 Tutorial, Release October 03, 2023

Hint: In PyCharm, open the ~/ros2_tutorials_preamble/python/minimalist_package folder to correctly
interact with this project.

Warning: It is confusing to have two nested folders with the same name. However, this is quite common and
starts to make sense after getting used to it (it is also the norm in ROS2). The first folder is supposed to be how
your file system sees your package, i.e. the project folder, and the other contains the actual Python package, with
the __init__.py and other source code.

2.3.4 Minimalist script

In this step, we’ll work on this.

python/minimalist_package/
minimalist_package/

__init__.py
minimalist_script.py

Let’s start with a minimalist script that prints a string periodically, as follows. Create a file
in ~/ros2_tutorials_preamble/python/minimalist_package/minimalist_package called
minimalist_script.py with the following contents.

minimalist_script.py

1 #!/bin/python3
2 import time
3

4

5 def main() -> None:
6 """An example main() function that prints 'Howdy!' twice per second."""
7 try:
8 while True:
9 print("Howdy!")

10 time.sleep(0.5)
11 except KeyboardInterrupt:
12 pass
13 except Exception as e:
14 print(e)
15

16

17 if __name__ == "__main__":
18 """When this module is run directly, it's __name__ property will be '__main__'."""
19 main()

2.3. (Murilo’s) Python Best Practices 15

ROS2 Tutorial, Release October 03, 2023

2.3.5 Running a Python script on the terminal

There are a few ways to run a script/module in the command line. Without worrying about file permissions, specifying
that the file must be interpreted by Python (and which version of Python) is the most general way to run a script

cd ~/ros2_tutorials_preamble/python/minimalist_package/minimalist_package
python3 minimalist_script.py

which will output

Hint: You can end the minimalist_script.py by pressing CTRL+C in the terminal in which it is running.

Howdy!
Howdy!
Howdy!

Another way to run a Python script is to execute it directly in the terminal. This can be done with

cd ~/ros2_tutorials_preamble/python/minimalist_package/minimalist_package
./minimalist_script.py

which will result in

bash: ./minimalist_script.py: Permission denied

because our file does not have the permission to run as an executable. To give it that permission, we must run ONCE

cd ~/ros2_tutorials_preamble/python/minimalist_package/minimalist_package
chmod +x minimalist_script.py

and now we can run it properly with

cd ~/ros2_tutorials_preamble/python/minimalist_package/minimalist_package
./minimalist_script.py

resulting in

Howdy!
Howdy!
Howdy!

Note that for this second execution strategy to work, we MUST have the #!, called shebang, at the beginning of the first
line. The path after the shebang specifies what program will be used to interpret that file. In general, differently from
Windows, Ubuntu does not guess the file type by the extension when running it.

#!/bin/python3

If we remove the shebang line and try to execute the script, it will return the following errors, because Ubuntu doesn’t
know what to do with that file.

./minimalist_script.py: line 2: import: command not found

./minimalist_script.py: line 5: syntax error near unexpected token `('

./minimalist_script.py: line 5: `def main() -> None:'

16 Chapter 2. Python Basics

https://en.wikipedia.org/wiki/Shebang_(Unix)

ROS2 Tutorial, Release October 03, 2023

2.3.6 When using if __name__=="__main__":, just call the real main()

There are multiple ways of running a Python script. In the one we just saw, the name of the module becomes __main__,
but in others that does not happen, meaning that the if can be completely skipped. So, write the main() function of
a script as something standalone and, in the condition, just call it and do nothing else, as shown below

if __name__ == "__main__":
"""When this module is run directly, it's __name__ property will be '__main__'."""
main()

2.3.7 It’s dangerous to go alone: Always wrap the contents of main function on a
try–except block

It is good practice to wrap the contents of main() call in a try--except block with at least the KeyboardInterrupt
clause. This allows the user to shutdown the module cleanly either through the terminal or through PyCharm. We have
done so in the example as follows

def main() -> None:
"""An example main() function that prints 'Howdy!' twice per second."""
try:

while True:
print("Howdy!")
time.sleep(0.5)

except KeyboardInterrupt:
pass

except Exception as e:
print(e)

This is of particular importance when hardware is used, otherwise, the connection with it might be left in an undefined
state causing difficult-to-understand problems at best and physical harm at worst.

The Exception clause in our example is very broad, but a MUST in code that is still under development. Exceptions
of all sorts can be generated when there is a communication error with the hardware, software (internet, etc), or other
issues.

This broad Exception clause could be replaced for a less broad exception handling if that makes sense in a given
application, but that is usually not necessary nor safe. When handling hardware, it is, in general, IMPOSSIBLE to test
the code of all combinations of inputs and states. As they say,

Be wary, for overconfidence is a slow and insidious [source for terrible bugs and failed demos]

Hint: Catching all Exceptions might make debugging more difficult in some cases. At your own risk, you can
remove this clause temporarily when trying to debug a stubborn bug, at the risk of forgetting to put it back and ruining
your hardware.

2.3. (Murilo’s) Python Best Practices 17

https://darkestdungeon.fandom.com/wiki/Narrator_(Darkest_Dungeon)

ROS2 Tutorial, Release October 03, 2023

2.3.8 Minimalist class: Use classes profusely

In this step, we’ll work on these.

python/minimalist_package/
minimalist_package/

__init__.py
minimalist_script.py
_minimalist_class.py

As you are familiar with object-oriented programming, you know that classes are central to this paradigm. As a memory
refresher, let’s make a class that honestly does nothing really useful but illustrates all the basic points in a Python class.

Create a file in ~/ros2_tutorials_preamble/python/minimalist_package/minimalist_package called
_minimalist_class.py with the following contents.

_minimalist_class.py

1 class MinimalistClass:
2 """
3 A minimalist class example with the most used elements.
4 https://docs.python.org/3/tutorial/classes.html
5 """
6 # Attribute reference, accessed with MinimalistClass.attribute_reference
7 attribute_reference: str = "Hello "
8

9 def __init__(self,
10 attribute_arg: float = 10.0,
11 private_attribute_arg: float = 20.0): # With a default value of 20.0
12 """The __init__ works together with __new__ (not shown here) to
13 construct a class. Loosely it is called the Python 'constructor' in
14 some references, although it is officially an 'initializer' hence
15 the name.
16 https://docs.python.org/3/reference/datamodel.html#object.__init__
17 It customizes an instance with input arguments.
18 """
19 # Attribute that can be accessed externally
20 self.attribute: float = attribute_arg
21

22 # Attribute that should not be accessed externally
23 # a name prefixed with an underscore (e.g. _spam) should be treated
24 # as a non-public part of the API (whether it is a function, a method or a data␣

→˓member).
25 # It should be considered an implementation detail and subject to change without␣

→˓notice.
26 self._private_attribute: float = private_attribute_arg
27

28 def method(self) -> float:
29 """Methods with 'self' should use at least one statement in which 'self' is␣

→˓required."""
30 return self.attribute + self._private_attribute
31

32 def set_private_attribute(self, private_attribute_arg: float) -> None:
(continues on next page)

18 Chapter 2. Python Basics

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

33 """If a private attribute should be writeable, define a setter."""
34 self._private_attribute = private_attribute_arg
35

36 def get_private_attribute(self) -> float:
37 """If a private attribute should be readable, define a getter."""
38 return self._private_attribute
39

40 @staticmethod
41 def static_method():
42 """
43 Methods that do not use the 'self' should be decorated with the @staticmethod.
44 It will only have access to attribute references.
45 https://docs.python.org/3.10/library/functions.html#staticmethod
46 """
47 return MinimalistClass.attribute_reference + "World!"

then, let’s modify the __init__.py with the following contents

__init__.py

1 """
2 Having an __init__.py file within a directory turns it into a Python Package.
3 A package within a package is called a subpackage.
4 https://docs.python.org/3/tutorial/modules.html#packages
5 """
6 from minimalist_package._minimalist_class import MinimalistClass

Note: When adding imports to the __init__.py, the folder that we use to open in Pycharm and that we call to execute
the scripts is extremely relevant. When packages are deployed (e.g. in PyPI or ROS2), the “correct” way to import in
__init__.py is to use import <PACKAGE_NAME>.<THING_TO_IMPORT>, which is why we’re doing it this way.

Note: Relative imports such as .<THING_TO_IMPORT> might work in some cases, and that is fine. It is a supported
and valid way to import. However, don’t be surprised when it doesn’t work in ROS2, PyPI packages, etc, and generates
a lot of frustration.

2.3.9 Not a matter of taste: Code style

It might be parsing through jibber-jabber code in l__tcode lessons with weird C-pointer logic and nested dereference
operators that gets you through the door into one of those fancy companies with no dress code and free snacks, perks
that I’m totally not envious of one bit. In the ideal world, at least, writing easy-to-understand code with the proper style
is what should keep you in that job.

So, always pay attention to the naming of classes (PascalCase), files and functions (snake_case), etc.

Thankfully, Python has a bunch of style rules builtin the language and PEP (Python Enhancement Proposal), such as
PEP8. Take this time to read it and get inspired by The Zen of Python

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.

2.3. (Murilo’s) Python Best Practices 19

https://pypi.org/
https://www.youtube.com/watch?v=rkUkVxM6R8o
https://en.wiktionary.org/wiki/Pascal_case
https://en.wikipedia.org/wiki/Snake_case
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0020/

ROS2 Tutorial, Release October 03, 2023

Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it.
Although that way may not be obvious at first *unless you’re Dutch*.
Now is better than never.
Although never is often better than *right now.*
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea – let’s do more of those!

2.3.10 Take the (type) hint: Always use type hints

Note: For more info, check out the documentation on Python typing and the type hints cheat sheet

Before you flood my inbox with complaints, let me vent for you. A preemptive vent.

But, you know, one of the cool things in Python is that we don’t have to explicitly type variables. Do you
want to turn Python into C?? Why do you love C++ so much you unpythonic Python hater????

The dynamic typing nature of Python is, no doubt, a strong point of the language. Note that adding type hints does
not impede your code to be used with other types as arguments. Type hints are, to no one’s surprise, hints to let users
(and some automated tools) know what types your functions were made for, e.g. to allow your favorite IDE (Integrated
Development Environment) to help you with code suggestions.

In these tutorials, we are not going to use any complex form of type hints. We’re basically going to attain ourselves to
the simplest two forms, the (attribute, argument, etc) type, and the return types.

For attributes we use <attribute>: type, as shown below

self.attribute: float = attribute_arg

For method arguments we use <argument>: <type> and for return types we use def <method>(<params>) ->
<type>, as shown below in our example

def set_private_attribute(self, private_attribute_arg: float) -> None:
"""If a private attribute should be writeable, define a setter."""
self._private_attribute = private_attribute_arg

20 Chapter 2. Python Basics

https://stackoverflow.com/questions/2470761/what-does-this-sentence-mean-in-the-zen-of-python
https://docs.python.org/3.10/library/typing.html
https://mypy.readthedocs.io/en/stable/cheat_sheet_py3.html

ROS2 Tutorial, Release October 03, 2023

2.3.11 Document your code with Docstrings

You do not need to document every single line you code, that would in fact be quite obnoxious

c stores the sum of a and b
c = a + b

d stores the square of c
d = c**2

check if d is zero
if d == 0:
Print warning
print("Warning")

But, on the other side of the coin, it doesn’t take too long for us to forget what the parameters of a function mean. Take
the (type) hint: Always use type hints helps a lot, but additional information is always welcome. If you get used to using
docstrings for every new method, your programming will be better in general because documenting your code makes
you think about it.

The example below shows a quick explanation of what the class does using a docstring

class MinimalistClass:
"""
A minimalist class example with the most used elements.
https://docs.python.org/3/tutorial/classes.html
"""

The PEP 257 talks about docstrings but does not define too much beyond saying that we should use it. My recommen-
dation as of now would be the Sphinx markup, because of the many Python libraries using it for Sphinx documenta-
tion/tutorials like this one.

The sample code shown in this section has docstrings everywhere, but they are being used to explain the general
usage of some Python syntax. When documenting your code, obviously, the documentation should be about what the
method/class/attribute does.

Hint: Ideally, all documentation is perfect from the start. In reality, however, that rarely ever happens so some
documentation is always better than none. My advice would be to write something as it goes and possibly adjust it to
more stable or cleaner documentation when the need arises.

2.3.12 Unit tests: always test your code

Note: For a comprehensive tutorial on unit testing go through the unittest docs.

In this step, we’ll work on these.

python/minimalist_package/
minimalist_package/

__init__.py
minimalist_script.py

(continues on next page)

2.3. (Murilo’s) Python Best Practices 21

https://peps.python.org/pep-0257/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/domains.html#python-signatures
https://docs.python.org/3.10/library/unittest.html

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

_minimalist_class.py
test/

test_minimalist_class.py

Unit testing is a flag that has been waved by programming enthusiasts and is often a good measurement of code maturity.

The elephant in the room is that writing unit tests is boring. Yes, we know, very boring.

Unit tests are boring because they are an investment. Unit testing won’t necessarily make your code [. . .] better, faster,
[. . .] right now. However, without tests, don’t be surprised after some point if your implementations make you drown
in tech debt. Dedicating a couple of minutes now to make a couple of tests when your codebase is still in its infancy
makes it more manageable and less boresome.

Back to the example, a good practice is to create a folder name test at the same level as the packages to be tested, like
so

cd ~/ros2_tutorials_preamble/python/minimalist_package
mkdir test

Then, we create a file named test_minimalist_class.py with the contents below in the test folder.

Note: The prefix test_ is important as it is used by some frameworks to automatically discover tests. So it is better
not to use that prefix if that file does not contain a unit test.

test_minimalist_class.py

1 import unittest
2 from minimalist_package import MinimalistClass
3

4

5 class TestMinimalistClass(unittest.TestCase):
6 """For each `TestCase`, we create a subclass of `unittest.TestCase`."""
7

8 def setUp(self):
9 self.minimalist_instance = MinimalistClass(attribute_arg=15.0,

10 private_attribute_arg=35.0)
11

12 def test_attribute(self):
13 self.assertEqual(self.minimalist_instance.attribute, 15.0)
14

15 def test_private_attribute(self):
16 self.assertEqual(self.minimalist_instance._private_attribute, 35.0)
17

18 def test_method(self):
19 self.assertEqual(self.minimalist_instance.method(), 15.0 + 35.0)
20

21 def test_get_set_private_attribute(self):
22 self.minimalist_instance.set_private_attribute(20.0)
23 self.assertEqual(self.minimalist_instance.get_private_attribute(), 20.0)
24

25 def test_static_method(self):
26 self.assertEqual(MinimalistClass.static_method(), "Hello World!")

(continues on next page)

22 Chapter 2. Python Basics

https://en.wikipedia.org/wiki/Unit_testing
https://www.youtube.com/watch?v=gAjR4_CbPpQ
https://www.youtube.com/watch?v=gAjR4_CbPpQ
https://en.wikipedia.org/wiki/Technical_debt

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

27

28

29 def main():
30 unittest.main()

Running the tests

For a quick jolt of instant gratification, let’s run the tests before we proceed with the explanation.

There are many ways to run tests written with unittest. The following will run all tests found in the folder test

cd ~/ros2_tutorials_preamble/python/minimalist_package
python -m unittest discover -v test

which will output

test_attribute (test_minimalist_class.TestMinimalistClass) ... ok
test_get_set_private_attribute (test_minimalist_class.TestMinimalistClass) ... ok
test_method (test_minimalist_class.TestMinimalistClass) ... ok
test_private_attribute (test_minimalist_class.TestMinimalistClass) ... ok
test_static_method (test_minimalist_class.TestMinimalistClass) ... ok

--
Ran 5 tests in 0.000s

OK

Yay! We’ve done it!

Start with use unittest

Note: ROS2 uses pytest as default, but that doesn’t mean you also have to use it in every Python code you ever write.

There are many test frameworks for Python. Nonetheless, the unittest module is built into Python so, unless you have
a very good reason not to use it, just [use] it.

We import the unittest module along with the class that we want to test, namely MinimalistClass.

import unittest
from minimalist_package import MinimalistClass

2.3. (Murilo’s) Python Best Practices 23

https://docs.python.org/3.10/library/unittest.html
https://www.youtube.com/watch?v=ZXsQAXx_ao0

ROS2 Tutorial, Release October 03, 2023

Test them all

Note: Good unit tests will not only let you know when something broke but also where it broke. A failed test of a
high-level function might not give you too much information, whereas a failed test of a lower-level (more fundamental)
function will allow you to pinpoint the issue.

Unit tests are somewhat like insurance. The more coverage you have, the better. In this example, we test all the elements
in the class. Each test will be based on one or more asserts. For more info check the unittest docs.

In a few words, we make a subclass of unittest.TestCase and create methods within it that test one part of the code,
hence the name unit tests.

def test_attribute(self):
self.assertEqual(self.minimalist_instance.attribute, 15.0)

def test_private_attribute(self):
self.assertEqual(self.minimalist_instance._private_attribute, 35.0)

def test_method(self):
self.assertEqual(self.minimalist_instance.method(), 15.0 + 35.0)

def test_get_set_private_attribute(self):
self.minimalist_instance.set_private_attribute(20.0)
self.assertEqual(self.minimalist_instance.get_private_attribute(), 20.0)

def test_static_method(self):
self.assertEqual(MinimalistClass.static_method(), "Hello World!")

If one of the asserts fails, then the related test will fail, and the test framework will let us know which one.

The test’s main function

Generally, a test script based on unittest will have the following main function. It will run all available tests in our test
class. For more info and alternatives check the unittest docs.

def main():
unittest.main()

Note: This section is optional, the ROS2 tutorial starts at ROS2 Installation.

2.4 Python’s asyncio

Note: Asynchronous code is not the same as code that runs in parallel, even more so in Python because of the GIL
(Global Interpreter Lock) (More info). Basically, the async framework allows us to not waste time waiting for results
that we don’t know when will arrive. It either allows us to attach a callback for when the result is ready, or to run
many service calls and await for them all, instead of running one at a time.

24 Chapter 2. Python Basics

https://docs.python.org/3.10/library/unittest.html
https://docs.python.org/3.10/library/unittest.html
https://wiki.python.org/moin/GlobalInterpreterLock

ROS2 Tutorial, Release October 03, 2023

There are two main ways to interact with async code, the first being by awaiting the results or by handling those
results through callbacks. Let’s go through both of them with examples.

2.4.1 Use a venv

We already know that it is a good practice to When you want to isolate your environment, use venv. So, let’s turn that
into a reflex and do so for this whole section.

cd ~
source ros2tutorial_venv/bin/activate

2.4.2 Create the minimalist_async package

In this step, we’ll work on these.

python/minimalist_package/minimalist_package/
minimalist_async/

__init__.py

As we learned in Minimalist package: something to start with, let’s make a package called minimalist_async.

cd ~/ros2_tutorials_preamble/python/minimalist_package/minimalist_package
mkdir minimalist_async
cd minimalist_async

we then create an __init__.py file with the following contents

__init__.py

1 from minimalist_package.minimalist_async._unlikely_to_return import unlikely_to_return

2.4.3 Create the async function

In this step, we’ll work on this.

python/minimalist_package/minimalist_package/
minimalist_async/

__init__.py
_unlikely_to_return.py

Let’s create a module called _unlikely_to_return.py to hold a function used for this example at the ~/
ros2_tutorials_preamble/python/minimalist_package/minimalist_package/minimalist_async
folder with the following contents

_unlikely_to_return.py

2.4. Python’s asyncio 25

ROS2 Tutorial, Release October 03, 2023

1 import asyncio
2 import random
3 from textwrap import dedent
4

5

6 async def unlikely_to_return(tag: str, likelihood: float = 0.1) -> float:
7 """
8 A function that is unlikely to return.
9 :return: When it returns, the successful random roll as a float.

10 """
11 while True:
12 a = random.uniform(0.0, 1.0)
13 if a < likelihood:
14 print(f"{tag} Done.")
15 return a
16 else:
17 print(f"{tag} retry needed (roll = {a} > {likelihood})")
18 await asyncio.sleep(0.1)

Because we’re using await in the function, we start by defining an async function.

Hint: If the function/method uses await anywhere, it should be async (More info).

This function was thought this way to emulate, for example, us waiting for something external without actually having
to. To do so, we add a while True: and return only with 10% chance. Instead of using a time.sleep()we use await
asyncio.sleep(0.1) to unleash the power of async. The main difference is that time.sleep() is synchronous
(blocking), meaning that the interpreter will be locked here until it finishes. With await, the interpreter is free to do
other things and come back to this one later after the desired amount of time has elapsed.

The function by itself doesn’t do much, so let’s use it in another module.

2.4.4 Using await

TL;DR Using await

1. Run multiple Tasks.

2. Use await for them, after they were executed.

In this step, we’ll work on this.

python/minimalist_package/minimalist_package/
minimalist_async/

__init__.py
_unlikely_to_return.py
async_await_example.py

Differently from synchronous programming, using async needs us to reflect on several tasks being executed at the
same time(-ish). The main use case is for programs with multiple tasks that can run concurrently and, at some point,
we need the result of those tasks to either end the program or further continue with other tasks.

26 Chapter 2. Python Basics

https://peps.python.org/pep-0492/

ROS2 Tutorial, Release October 03, 2023

The await strategy we’re seeing now is suitable when either we need the results from all tasks before proceeding or
when the order of results matters.

To illustrate this, let’s make a file called async_await_example.py in minimalist_async with the following con-
tents.

async_await_example.py

1 import asyncio
2 from minimalist_package.minimalist_async import unlikely_to_return
3

4

5 async def async_main() -> None:
6 tags: list[str] = ["task1", "task2"]
7 tasks: list[asyncio.Task] = []
8

9 # Start all tasks before awaiting them, otherwise the code
10 # will not be concurrent.
11 for task_tag in tags:
12 task = asyncio.create_task(
13 unlikely_to_return(tag=task_tag)
14)
15 tasks.append(task)
16

17 # Alternatively, use asyncio.gather()
18 # At this point, the functions are already running concurrently. We are now␣

→˓(a)waiting for the
19 # results, IN THE ORDER OF THE AWAIT, even if the other task ends first.
20 print("Awaiting results...")
21 for (tag, task) in zip(tags, tasks):
22 result = await task
23 print(f"The result of task={tag} was {result}.")
24

25

26 def main() -> None:
27 try:
28 asyncio.run(async_main())
29 except KeyboardInterrupt:
30 pass
31 except Exception as e:
32 print(e)
33

34

35 if __name__ == "__main__":
36 main()

We start by importing the async method we defined in the other module

from minimalist_package.minimalist_async import unlikely_to_return

The function will be run by an instance of asyncio.Task. When the task is created, it is equivalent to calling the
function and it starts running concurrently to the script that created the task. The example is a bit on the fancy side to
make it easier to read and mantain, but the concept is simple. When using the await paradigm, focus on the following

1. Make the function it should run, like our unlikely_to_return().

2.4. Python’s asyncio 27

ROS2 Tutorial, Release October 03, 2023

2. Run all concurrent tasks and keep a reference to them as asyncio.Task.

3. await on each asyncio.Task, in the order in which you want those results.

async def async_main() -> None:
tags: list[str] = ["task1", "task2"]
tasks: list[asyncio.Task] = []

Start all tasks before awaiting them, otherwise the code
will not be concurrent.
for task_tag in tags:

task = asyncio.create_task(
unlikely_to_return(tag=task_tag)

)
tasks.append(task)

Alternatively, use asyncio.gather()
At this point, the functions are already running concurrently. We are now␣

→˓(a)waiting for the
results, IN THE ORDER OF THE AWAIT, even if the other task ends first.
print("Awaiting results...")
for (tag, task) in zip(tags, tasks):

result = await task
print(f"The result of task={tag} was {result}.")

Ok, enough with the explanation, let’s go to the endorphin rush of actually running the program with

cd ~/ros2_tutorials_preamble/python/minimalist_package/
python3 -m minimalist_package.minimalist_async.async_await_example

Which will result in something like shown below. The function is stochastic, so it might take more or less time to return
and the order of the tasks ending might also be different.

However, in the await framework, the results will ALWAYS be processed in the order that was specified by the await,
EVEN WHEN THE OTHER TASK ENDS FIRST, as in the example below. This is neither good nor bad, it will be
proper for some cases and not proper for others.

We can also see that both tasks are running concurrently until task2 finishes, then only task1 is executed.

Awaiting results...
task1 retry needed (roll = 0.36896762068176037 > 0.1).
task2 retry needed (roll = 0.8429002838770375 > 0.1).
task1 retry needed (roll = 0.841018521652675 > 0.1).
task2 retry needed (roll = 0.1351152094825686 > 0.1).
task1 retry needed (roll = 0.9484654265361889 > 0.1).
task2 retry needed (roll = 0.3167046796566366 > 0.1).
task1 retry needed (roll = 0.7519672365071198 > 0.1).
task2 retry needed (roll = 0.38440407016827005 > 0.1).
task1 retry needed (roll = 0.23155484384953284 > 0.1).
task2 retry needed (roll = 0.6418306170261009 > 0.1).
task1 retry needed (roll = 0.532161975008607 > 0.1).
task2 Done.
task1 retry needed (roll = 0.448132225703992 > 0.1).
task1 retry needed (roll = 0.13504700640433664 > 0.1).

(continues on next page)

28 Chapter 2. Python Basics

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

task1 retry needed (roll = 0.7404815278498079 > 0.1).
task1 retry needed (roll = 0.9830081693068259 > 0.1).
task1 retry needed (roll = 0.4070546146764875 > 0.1).
task1 retry needed (roll = 0.7474267487174882 > 0.1).
task1 Done.
The result of task=task1 was 0.038934769861482144.
The result of task=task2 was 0.06380247590535493.

Process finished with exit code 0

Hooray! May there be concurrency!

2.4.5 Using callback

TL;DR Using callbacks

1. Run multiple Tasks.

2. Add a callback to handle the result as soon as it is ready.

3. Use await for each Task just so that the main loop does not return prematurely.

In this step, we’ll work on this.

python/minimalist_package/minimalist_package/
minimalist_async/

__init__.py
async_await_example.py
async_callback_example.py

Differently from awaiting for each task and then processing their result, we can define callbacks in such a way that
each result will be processed as they come. In that way, the results can be processed in an arbitrary order. Once again,
this is inherently neither a good strategy nor a bad one. Some frameworks will work with callbacks, for example ROS1,
ROS2, and Qt, but some others will prefer to use await.

Enough diplomacy, let’s make a file called async_callback_example.py in minimalist_asyncwith the following
contents.

async_callback_example.py

1 from functools import partial
2 import asyncio
3 from minimalist_package.minimalist_async import unlikely_to_return
4

5

6 def handle_return_callback(tag: str, future: asyncio.Future) -> None:
7 """
8 Callback example for asyncio.Future
9 :param tag: An example parameter, in this case, a tag

10 :param future: A asyncio.Future is expected to be the last parameter
(continues on next page)

2.4. Python’s asyncio 29

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

11 of the callback.
12 :return: Nothing.
13 """
14 if future is not None and future.done():
15 print(f"The result of task={tag} was {future.result()}.")
16 else:
17 print(f"Problem with task={tag}.")
18

19

20 async def async_main() -> None:
21 tags: list[str] = ["task1", "task2"]
22 tasks: list[asyncio.Task] = []
23

24 # Start all tasks before adding the callback
25 for task_tag in tags:
26 task = asyncio.create_task(
27 unlikely_to_return(tag=task_tag)
28)
29 task.add_done_callback(
30 partial(handle_return_callback, task_tag)
31)
32 tasks.append(task)
33

34 # Alternatively, use asyncio.gather()
35 # At this point, the functions are already running concurrently. And the result will␣

→˓be processed
36 # by the callback AS "SOON" AS THEY ARE AVAILABLE.
37 print("Awaiting results...")
38 for task in tasks:
39 await task
40

41

42 def main() -> None:
43 try:
44 asyncio.run(async_main())
45 except KeyboardInterrupt:
46 pass
47 except Exception as e:
48 print(e)
49

50

51 if __name__ == "__main__":
52 main()

In the callback paradigm, besides the function that does the actual task, as in the prior example, we have to make a,
to no one’s surprise, callback function to process the results as they come.

We do so with

def handle_return_callback(tag: str, future: asyncio.Future) -> None:
"""
Callback example for asyncio.Future
:param tag: An example parameter, in this case, a tag

(continues on next page)

30 Chapter 2. Python Basics

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

:param future: A asyncio.Future is expected to be the last parameter
of the callback.
:return: Nothing.
"""
if future is not None and future.done():

print(f"The result of task={tag} was {future.result()}.")
else:

print(f"Problem with task={tag}.")

In this case, the callback must receive a asyncio.Future and process it. Test the future for None in case the task
fails for any reason.

Aside from that, there are only two key differences with the await logic example we showed before,

1. The callback must be added with task.add_done_callback(), remember to use partial() if the callback
has other parameters besides the Future

2. await for the tasks at the end, not because this script will process it (it will be processed as they come by its
callback), but because otherwise the main script will return and (most likely) nothing will be done.

async def async_main() -> None:
tags: list[str] = ["task1", "task2"]
tasks: list[asyncio.Task] = []

Start all tasks before adding the callback
for task_tag in tags:

task = asyncio.create_task(
unlikely_to_return(tag=task_tag)

)
task.add_done_callback(

partial(handle_return_callback, task_tag)
)
tasks.append(task)

Alternatively, use asyncio.gather()
At this point, the functions are already running concurrently. And the result will␣

→˓be processed
by the callback AS "SOON" AS THEY ARE AVAILABLE.
print("Awaiting results...")
for task in tasks:

await task

But enough talk. . . Have at you! Let’s run the code with

cd ~/ros2_tutorials_preamble/python/
python3 -m minimalist_package.minimalist_async.async_callback_example

Depending on our luck, we will have a very illustrative result like the one below. This example shows that, with the
callback logic, when the second task ends before the first one, it will be automatically processed by its callback.

Awaiting results...
task1 retry needed (roll = 0.6248308966234916 > 0.1).
task2 retry needed (roll = 0.24259714032999036 > 0.1).
task1 retry needed (roll = 0.1996764883575476 > 0.1).

(continues on next page)

2.4. Python’s asyncio 31

https://knowyourmeme.com/memes/die-monster-what-is-a-man

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

task2 Done.
The result of task=task2 was 0.09069407383542283.
task1 retry needed (roll = 0.6700777523785147 > 0.1).
task1 retry needed (roll = 0.7344216907108979 > 0.1).
task1 retry needed (roll = 0.4907223062034761 > 0.1).
task1 retry needed (roll = 0.20026037098687932 > 0.1).
task1 Done.
The result of task=task1 was 0.09676678954317675.

Can you feel the new synaptic connections?

Note: This section is optional, the ROS2 tutorial starts at ROS2 Installation.

2.5 Making your Python package installable

Warning: There is some movement towards having Python deployable packages configurable with pyproject.
toml as a default. However, in ROS2 and many other frameworks, the setup.py approach using setuptools is
ingrained. So, we’ll do that for these tutorials but it doesn’t necessarily mean it’s the best approach.

2.5.1 Use a venv

We already know that it is a good practice to When you want to isolate your environment, use venv. So, let’s turn that
into a reflex and do so for this whole section.

cd ~
source ros2tutorial_venv/bin/activate

2.5.2 The setup.py

In this step, we’ll work on this.

python/minimalist_package/
setup.py

Has Python Packaging ever looked daunting to you? Of course not, but let’s go through a quick overview of how we
can get this done.

First, we create a setup.py at ~/ros2_tutorials_preamble/python/minimalist_package with the following
contents

setup.py

from setuptools import setup, find_packages

package_name = 'minimalist_package'
(continues on next page)

32 Chapter 2. Python Basics

https://packaging.python.org/en/latest/

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

setup(
name=package_name,
version='23.6.0',
packages=find_packages(exclude=['test']),
install_requires=['setuptools'],
zip_safe=True,
maintainer='Murilo M. Marinho',
maintainer_email='murilomarinho@ieee.org',
description='A minimalist package',
license='MIT',
entry_points={

'console_scripts': [
'minimalist_script = minimalist_package.minimalist_script:main',
'async_await_example = minimalist_package.minimalist_async.async_await_

→˓example:main',
'async_callback_example = minimalist_package.minimalist_async.async_callback_

→˓example:main'
],

},
)

Note: By no coincidence, the setup.py is a Python file. We use Python to interpret it, meaning that we can process
information using Python to define the arguments for the setup() function.

All arguments defined above are quite self-explanatory and are passed to the setup() function available at the
setuptools module built into Python.

The probably most unusual part of it is the entry_points dictionary. In the key console_scripts, we can list up
scripts in the package that can be used as console programs after the package is installed. Indeed, setuptools is rich,
has a castle, and can do magic.

2.5.3 Installing wheel

Warning: In the current version of Python, if you do not install wheel as described herein, the following warning
will be output.

DEPRECATION: minimalist-package is being installed using the legacy 'setup.py install
→˓' method because it does not have a 'pyproject.toml'
and the 'wheel' package is not installed. pip 23.1 will enforce this behaviour change.
→˓ A possible replacement is to enable the '--use-pep517'
option. Discussion can be found at https://github.com/pypa/pip/issues/8559

To install the package in the recommended way in this tutorial, we need wheel. While using the venv, we install it

python3 -m pip install wheel

2.5. Making your Python package installable 33

ROS2 Tutorial, Release October 03, 2023

2.5.4 Installing the Python package

We first go to the folder containing our project folder and we build and install the project folder within it using pip as
follows

cd ~/ros2_tutorials_preamble/python
python3 -m pip install ./minimalist_package

which results in

Processing ./minimalist_package
Preparing metadata (setup.py) ... done

Requirement already satisfied: setuptools in ~ros2tutorial_venv/lib/python3.10/site-
→˓packages (from minimalist-package==23.6.0) (65.6.3)
Building wheels for collected packages: minimalist-package
Building wheel for minimalist-package (setup.py) ... done
Created wheel for minimalist-package: filename=minimalist_package-23.6.0-py3-none-any.

→˓whl size=8608 sha256=929446a2fa81fc99fc5dec239a9f3e4439bc8fa8fe49cc4deb987d6f31b3d8b9
Stored in directory: /private/var/folders/4k/20khytt17blf21lptscczbl00000gn/T/pip-

→˓ephem-wheel-cache-j3a0f5xy/wheels/00/16/ef/
→˓863b898c6ea4d32d47a24fda31f80cbc9cb1063742032b7d49
Successfully built minimalist-package
Installing collected packages: minimalist-package
Successfully installed minimalist-package-23.6.0

Done!

2.5.5 Running the newly available scripts

After installing, we have access to the scripts (and packages). For instance, we can do

minimalist_script

which will return the friendly

Howdy!
Howdy!
Howdy!

The other two scripts are also available, for instance, we can do

async_await_example

which will return something similar to

Awaiting results...
task1 retry needed (roll = 0.1534174185325745 > 0.1).
task2 retry needed (roll = 0.35338687437350913 > 0.1).
task1 Done.
task2 retry needed (roll = 0.3877920607121429 > 0.1).
The result of task=task1 was 0.07646509818952207.
task2 retry needed (roll = 0.7010015915930288 > 0.1).
task2 retry needed (roll = 0.8907576123834621 > 0.1).

(continues on next page)

34 Chapter 2. Python Basics

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

task2 retry needed (roll = 0.4233577578392548 > 0.1).
task2 retry needed (roll = 0.7512028176843422 > 0.1).
task2 retry needed (roll = 0.33501957024540663 > 0.1).
task2 Done.
The result of task=task2 was 0.09239734738421612.

2.5.6 Importing things from the installed package

We first run an interactive session with

python3

we can then interact with it as any other installed package

>>> from minimalist_package import MinimalistClass
>>> mc = MinimalistClass()
>>> print(mc.get_private_attribute())
20.0

Hooray!

2.5.7 Uninstalling packages

Given that we installed it using pip, removing it is also a breeze. We do

python3 -m pip uninstall minimalist_package

which will return something similar to

Found existing installation: minimalist-package 23.6.0
Uninstalling minimalist-package-23.6.0:
Would remove:
/home/murilo/ros2tutorial_venv/bin/async_await_example
/home/murilo/ros2tutorial_venv/bin/async_callback_example
/home/murilo/ros2tutorial_venv/bin/minimalist_script
/home/murilo/ros2tutorial_venv/lib/python3.10/site-packages/minimalist_package-23.6.

→˓0.dist-info/*
/home/murilo/ros2tutorial_venv/lib/python3.10/site-packages/minimalist_package/*

Proceed (Y/n)?

and just press ENTER, resulting in the package being uninstalled

Successfully uninstalled minimalist-package-23.6.0

2.5. Making your Python package installable 35

ROS2 Tutorial, Release October 03, 2023

36 Chapter 2. Python Basics

CHAPTER

THREE

ROS2 INSTALLATION

Note: This tutorial is an abridged version of the original ROS 2 Documentation. This tutorial considers a fresh Ubuntu
Desktop (not Server) 22.04 LTS x64 (not arm64) installation, that you have super user access and common sense. It
might work in other cases, but those have not been tested in this tutorial.

Warning: All commands must be followed to the letter, in the precise order described herein. Any deviation from
what is described might cause unspecified problems and not all of them are easily solvable.

3.1 Update apt packages

Hint: You can quickly open a new terminal window by pressing CTRL+ATL+T.

After a fresh install, update and upgrade all apt packages.

sudo apt update && sudo apt upgrade -y

3.2 Install a few pre-requisites

sudo apt install -y software-properties-common curl terminator git

Namely:

software-
properties-
common

Allows us to access the ROS2 packages using apt.

curl Helps download installation/configuration files from the terminal.
terminator ROS uses plenty of terminals, so this helps keep one’s sanity intact by enabling the management of

several terminals in a single window. Despite what some might say, this particular terminator has no
interest whatsoever in Sarah Connor.

git The trendy source control program everyone mentions in their CV. You might be interested in know-
ing why it’s called git.

37

https://docs.ros.org/en/humble/index.html
https://askubuntu.com/questions/1000118/what-is-software-properties-common
https://askubuntu.com/questions/1000118/what-is-software-properties-common
https://askubuntu.com/questions/1000118/what-is-software-properties-common
https://curl.se/
https://manpages.ubuntu.com/manpages/bionic/man1/terminator.1.html
https://en.wikipedia.org/wiki/Git

ROS2 Tutorial, Release October 03, 2023

3.3 Add ROS2 sources

Your apt needs to know where the ROS2 packages can be found and to be able to verify their authenticity. After setting
up the apt sources, the local package list must be updated. The following commands will do all that magic.

sudo add-apt-repository universe
sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/
→˓share/keyrings/ros-archive-keyring.gpg
echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-
→˓keyring.gpg] http://packages.ros.org/ros2/ubuntu $(. /etc/os-release && echo $UBUNTU_
→˓CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null
sudo apt update && sudo apt upgrade -y

3.4 Install ROS2 packages

There are plenty of ways to install ROS2, the following will suffice for now.

sudo apt install -y ros-humble-desktop ros-dev-tools

3.5 Set up system environment to find ROS2

ROS2 packages are implemented in such a way that they live peacefully in the /opt/ros/{ROS_DISTRO} folder in
your Ubuntu. A given terminal window or program will only know that ROS2 exists, and which version you want to
use, if you run a setup file for each terminal, every time you open a new one.

The ~/.bashrc file can be used for that exact purpose as, in Ubuntu, that is the file that configures each terminal
window for a given user.

TL;DR just run this ONCE AND ONLY ONCE

echo "# Source ROS2 Humble, as instructed in https://ros2-tutorial.readthedocs.io" >> ~/.
→˓bashrc
echo "source /opt/ros/humble/setup.bash" >> ~/.bashrc
source ~/.bashrc

3.6 Check if it works

If the following command

ros2

outputs something similar to what is shown below, then it worked! Otherwise, it didn’t!

usage: ros2 [-h] [--use-python-default-buffering]
Call `ros2 <command> -h` for more detailed usage. ...

ros2 is an extensible command-line tool for ROS 2.

(continues on next page)

38 Chapter 3. ROS2 Installation

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

options:
-h, --help show this help message and exit
--use-python-default-buffering

Do not force line buffering in stdout and instead use
the python default buffering, which might be affected
by PYTHONUNBUFFERED/-u and depends on whatever stdout
is interactive or not

Commands:
action Various action related sub-commands
bag Various rosbag related sub-commands
component Various component related sub-commands
daemon Various daemon related sub-commands
doctor Check ROS setup and other potential issues
interface Show information about ROS interfaces
launch Run a launch file
lifecycle Various lifecycle related sub-commands
multicast Various multicast related sub-commands
node Various node related sub-commands
param Various param related sub-commands
pkg Various package related sub-commands
run Run a package specific executable
security Various security related sub-commands
service Various service related sub-commands
topic Various topic related sub-commands
wtf Use `wtf` as alias to `doctor`

Call `ros2 <command> -h` for more detailed usage.

3.6. Check if it works 39

ROS2 Tutorial, Release October 03, 2023

40 Chapter 3. ROS2 Installation

CHAPTER

FOUR

TERMINATOR IS LIFE

Note: You can refer to the project’s documentation for more info.

After installing terminator as instructed in the last section, the default terminal window will be automatically updated
to use it.

4.1 Shortcuts

To prevent repetition, let’s go through the most relevant terminator shortcuts only once, here, now.

Table 1: Terminator Shortcuts

Shortcut Description
CTRL+ALT+T Open a new terminal window using your default viewer.
SHIFT+CTRL+E Horizontally split the currently focused window by adding a new terminal.
SHIFT+CTRL+O Vertically split the currently focused window by adding a new terminal.

For example, pressing the following combination:

1. CTRL+ALT+T

2. SHIFT+CTRL+E

3. SHIFT+CTRL+O

Will result in three terminal windows that look like so.

41

https://terminator-gtk3.readthedocs.io/en/latest/
https://terminator-gtk3.readthedocs.io/en/latest/gettingstarted.html#layout-shortcuts

ROS2 Tutorial, Release October 03, 2023

4.2 OK, but what if shortcuts scare me

Instead of using shortcuts, a context menu can be opened by right-clicking a terminal window. Then, you can choose
to Split Horizontally or Split Vertically to achieve the same results.

42 Chapter 4. Terminator is life

ROS2 Tutorial, Release October 03, 2023

4.2. OK, but what if shortcuts scare me 43

ROS2 Tutorial, Release October 03, 2023

44 Chapter 4. Terminator is life

CHAPTER

FIVE

WORKSPACE SETUP

Similar to how ROS2 files are installed in /opt/ros/{ROS_DISTRO} so that you can have several distributions installed
simultaneously, you can also have many separate workspaces in your system.

In addition, because files in the /opt folder require superuser privileges (for good reasons), having a user-wide
workspace is the accepted practice. They call this an overlay.

5.1 Setting up

In ROS2, a workspace is nothing more than a folder in which all your packages are contained.

No, really, you just need to make a folder, e.g. the one we will use throughout these tutorials.

cd ~
mkdir -p ros2_tutorial_workspace/src

It is common practice to have all source files inside the src folder, so we will also do so for these tutorials. Nonetheless,
it is not a strict requirement.

5.2 First build

Regardless of it being a currently empty project, we run colcon once to set up the environment and illustrate a few
things. The program colcon is the build system of ROS2 and will be described in more detail later.

For now, run

cd ~/ros2_tutorial_workspace
colcon build

for which the output will be something similar to

Summary: 0 packages finished [0.17s]

given that we have an empty workspace, no surprise here.

The folders build, install, and log have been generated automatically by colcon. The project structure becomes
as follows.

ros2_tutorial_workspace/
src/
build/

(continues on next page)

45

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

install/
log/

Inside the install folder lie all programs etc generated by the project that can be accessed by the users.

Do the following just once, so that all terminal windows automatically source this new workspace for you.

echo "# Source the ROS2 overlay, as instructed in https://ros2-tutorial.readthedocs.io" >
→˓> ~/.bashrc
echo "source ~/ros2_tutorial_workspace/install/setup.bash" >> ~/.bashrc
source ~/.bashrc

However, since our workspace is currently empty, there’s not much we can do with it. Let’s add some content.

46 Chapter 5. Workspace setup

CHAPTER

SIX

CREATE PACKAGES (ROS2 PKG CREATE)

ROS2 has a tool to help create package templates. We can get all available options by running

ros2 pkg create -h

which outputs a list of handy options to populate the package template with useful files. Namely, the four emphasized
ones.

usage: ros2 pkg create [-h] [--package-format {2,3}] [--description DESCRIPTION]
[--license LICENSE]
[--destination-directory DESTINATION_DIRECTORY]
[--build-type {cmake,ament_cmake,ament_python}]
[--dependencies DEPENDENCIES [DEPENDENCIES ...]]
[--maintainer-email MAINTAINER_EMAIL]
[--maintainer-name MAINTAINER_NAME] [--node-name NODE_NAME]
[--library-name LIBRARY_NAME]
package_name

Create a new ROS 2 package

positional arguments:
package_name The package name

options:
-h, --help show this help message and exit
--package-format {2,3}, --package_format {2,3}

The package.xml format.
--description DESCRIPTION

The description given in the package.xml
--license LICENSE The license attached to this package; this can be an arbitrary

string, but a LICENSE file will only be generated if it is one
of the supported licenses (pass '?' to get a list)

--destination-directory DESTINATION_DIRECTORY
Directory where to create the package directory

--build-type {cmake,ament_cmake,ament_python}
The build type to process the package with

--dependencies DEPENDENCIES [DEPENDENCIES ...]
list of dependencies

--maintainer-email MAINTAINER_EMAIL
email address of the maintainer of this package

--maintainer-name MAINTAINER_NAME
name of the maintainer of this package

(continues on next page)

47

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

--node-name NODE_NAME
name of the empty executable

--library-name LIBRARY_NAME
name of the empty library

48 Chapter 6. Create packages (ros2 pkg create)

CHAPTER

SEVEN

CREATING A PYTHON PACKAGE (FOR AMENT_PYTHON)

Note: This is NOT the only way to build Python packages in ROS2.

Packages in ROS2 can either rely on CMake or directly use setup tools available in Python. For pure Python projects,
it might be easier to use ament_python, so we start this tutorial with it.

Let us build the simplest of Python packages and start from there.

cd ~/ros2_tutorial_workspace/src
ros2 pkg create the_simplest_python_package \
--build-type ament_python

Hint: If you don’t explicitly define the mantainer name and email, ros2 pkg create will try to:

1. Define the mantainer’s name as the currently logged-in user’s name (see source and source).

2. Define the mantainer’s email by getting it from git (see source). It will get whatever is defined with git config
--global user.email.

which will result in the output below, meaning the package has been generated successfully.

going to create a new package
package name: the_simplest_python_package
destination directory: /home/murilo/ros2_tutorial_workspace/src
package format: 3
version: 0.0.0
description: TODO: Package description
maintainer: ['murilo <murilomarinho@ieee.org>']
licenses: ['TODO: License declaration']
build type: ament_python
dependencies: []
creating folder ./the_simplest_python_package
creating ./the_simplest_python_package/package.xml
creating source folder
creating folder ./the_simplest_python_package/the_simplest_python_package
creating ./the_simplest_python_package/setup.py
creating ./the_simplest_python_package/setup.cfg
creating folder ./the_simplest_python_package/resource
creating ./the_simplest_python_package/resource/the_simplest_python_package
creating ./the_simplest_python_package/the_simplest_python_package/__init__.py

(continues on next page)

49

https://github.com/ros2/ros2cli/blob/cf43e92fb17b5e51c95406f01fa63aeb65adf75f/ros2pkg/ros2pkg/verb/create.py#L82
https://docs.python.org/3/library/getpass.html#getpass.getuser
https://github.com/ros2/ros2cli/blob/cf43e92fb17b5e51c95406f01fa63aeb65adf75f/ros2pkg/ros2pkg/verb/create.py#L109

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

creating folder ./the_simplest_python_package/test
creating ./the_simplest_python_package/test/test_copyright.py
creating ./the_simplest_python_package/test/test_flake8.py
creating ./the_simplest_python_package/test/test_pep257.py

[WARNING]: Unknown license 'TODO: License declaration'. This has been set in the␣
→˓package.xml, but no LICENSE file has been created.
It is recommended to use one of the ament license identitifers:
Apache-2.0
BSL-1.0
BSD-2.0
BSD-2-Clause
BSD-3-Clause
GPL-3.0-only
LGPL-3.0-only
MIT
MIT-0

We can build the workspace that now has this empty package using colcon

cd ~/ros2_tutorial_workspace
colcon build

which will now output

Starting >>> the_simplest_python_package
--- stderr: the_simplest_python_package
/usr/lib/python3/dist-packages/setuptools/command/install.py:34:␣
→˓SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and␣
→˓other standards-based tools.
warnings.warn(

Finished <<< the_simplest_python_package [1.72s]

Summary: 1 package finished [1.89s]
1 package had stderr output: the_simplest_python_package

meaning that colcon successfully built the example package.

Warning: In this version of ROS2, all ament_python packages will output a
SetuptoolsDeprecationWarning. This is related to this issue on Github. Until that is fixed, just ignore
it.

50 Chapter 7. Creating a Python package (for ament_python)

https://github.com/colcon/colcon-core/issues/454#issuecomment-1262592774

CHAPTER

EIGHT

CREATING A PYTHON NODE WITH A TEMPLATE (FOR AMENT_PYTHON)

It is always good to rely on the templates available in ros2 pkg create, mostly because the best practices for pack-
aging might change between ROS2 versions.

Let us use the template for creating a package with a Node, as follows.

cd ~/ros2_tutorial_workspace/src
ros2 pkg create python_package_with_a_node \
--build-type ament_python \
--node-name sample_python_node

Which will output many things in common with the prior example, but with two major differences.

1. It generates a template Node

2. The setup.py has information about the Node.

going to create a new package
package name: python_package_with_a_node
destination directory: ~/ros2_tutorial_workspace/src
package format: 3
version: 0.0.0
description: TODO: Package description
maintainer: ['murilo <murilomarinho@ieee.org>']
licenses: ['TODO: License declaration']
build type: ament_python
dependencies: []
node_name: sample_python_node
creating folder ./python_package_with_a_node
creating ./python_package_with_a_node/package.xml
creating source folder
creating folder ./python_package_with_a_node/python_package_with_a_node
creating ./python_package_with_a_node/setup.py
creating ./python_package_with_a_node/setup.cfg
creating folder ./python_package_with_a_node/resource
creating ./python_package_with_a_node/resource/python_package_with_a_node
creating ./python_package_with_a_node/python_package_with_a_node/__init__.py
creating folder ./python_package_with_a_node/test
creating ./python_package_with_a_node/test/test_copyright.py
creating ./python_package_with_a_node/test/test_flake8.py
creating ./python_package_with_a_node/test/test_pep257.py
creating ./python_package_with_a_node/python_package_with_a_node/sample_python_node.py

(continues on next page)

51

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

[WARNING]: Unknown license 'TODO: License declaration'. This has been set in the␣
→˓package.xml, but no LICENSE file has been created.
It is recommended to use one of the ament license identitifers:
Apache-2.0
BSL-1.0
BSD-2.0
BSD-2-Clause
BSD-3-Clause
GPL-3.0-only
LGPL-3.0-only
MIT
MIT-0

Then, we can build the workspace as usual to consider the new package as well.

cd ~/ros2_tutorial_workspace
colcon build

which will result in going through the package we created in the prior example and the current one.

Starting >>> python_package_with_a_node
Starting >>> the_simplest_python_package
--- stderr: python_package_with_a_node
/usr/lib/python3/dist-packages/setuptools/command/install.py:34:␣
→˓SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and␣
→˓other standards-based tools.
warnings.warn(

Finished <<< python_package_with_a_node [1.16s]
--- stderr: the_simplest_python_package
/usr/lib/python3/dist-packages/setuptools/command/install.py:34:␣
→˓SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and␣
→˓other standards-based tools.
warnings.warn(

Finished <<< the_simplest_python_package [1.17s]

Summary: 2 packages finished [1.36s]
2 packages had stderr output: python_package_with_a_node the_simplest_python_package

52 Chapter 8. Creating a Python Node with a template (for ament_python)

CHAPTER

NINE

ALWAYS SOURCE AFTER YOU BUILD

When creating new packages or modifying existing ones, many changes will not be visible by the system unless our
workspace is re-sourced.

For example, if we try the following in the terminal window we used to first build this example package

ros2 run python_package_with_a_node sample_python_node

it will not work and will output

Package 'python_package_with_a_node' not found

As the workspace grows bigger and the packages more complex, figuring out such errors becomes a considerable hassle.
My suggestion is to always source after a build, so that sourcing errors can always be ruled out.

cd ~/ros2_tutorial_workspace
colcon build
source install/setup.bash

Hint for the future you

In rare cases, the workspace can be left in an unclean state in which older build artifacts cause build and runtime issues,
such as failed builds and programs that do not seem to match their intended source code. These artifacts might include
old files that should have been removed, issues with dependencies, and so on. In those cases, it might be good to remove
the build, install, and log folders before rebuilding and re-sourcing.

Hint for the future you

It might also be the case that certain packages fail to build after build, install, and log are removed, or that the
build only works after colcon is called twice in a row. This is usually because the dependencies of the packages in
your workspace are poorly configured and, in consequence, ROS2 is not building them in the correct order. If your
workspace does not build properly after being cleaned as mentioned above, you must correct its dependencies until it
builds properly.

53

ROS2 Tutorial, Release October 03, 2023

54 Chapter 9. Always source after you build

CHAPTER

TEN

RUNNING A NODE (ROS2 RUN)

The most basic way of running a Node is using the ROS2 tool ros2 run.

More information on it can be obtained through

ros2 run -h

which returns the most relevant arguments package_name and executable_name.

usage: ros2 run [-h] [--prefix PREFIX] package_name executable_name ...

Run a package specific executable

positional arguments:
package_name Name of the ROS package
executable_name Name of the executable
argv Pass arbitrary arguments to the executable

options:
-h, --help show this help message and exit
--prefix PREFIX Prefix command, which should go before the executable. Command must␣

→˓be wrapped
in quotes if it contains spaces (e.g. --prefix 'gdb -ex run --args').

Back to our example, with a properly sourced terminal, the example node can be executed with

ros2 run python_package_with_a_node sample_python_node

which will now correctly output

Hi from python_package_with_a_node.

55

ROS2 Tutorial, Release October 03, 2023

56 Chapter 10. Running a node (ros2 run)

CHAPTER

ELEVEN

USING PYCHARM FOR ROS2 SOURCES

With PyCharm opened as instructed in Editing Python source (with PyCharm), here are a few tips to make your life
easier.

1. Go to File → Open. . . and browse to our workspace folder ~/ros2_tutorial_workspace

2. Right-click the folder install and choose Mark Directory as → Excluded. Do the same for build and log

Your project view should look like so

11.1 Running a Node from PyCharm

With the project correctly configured, you can

1. move to src → python_package_with_a_node → python_package_with_a_node.

2. double (left) click sample_python_node.py to open the source code, showing the contents of the Node. It is
minimal to the point that it doesn’t have anything related to ROS at all.

3. right click sample_python_node.py and choose Run sample_python_node

It will output in PyCharm’s console

Hi from python_package_with_a_node.

Note: You should extensively use the Debugger in PyCharm when developing code. If you’re still adding print
functions to figure out what is wrong with your code, now is the opportunity you always needed to stop doing that and
join the adult table.

57

ROS2 Tutorial, Release October 03, 2023

Note: You can read more about debugging with PyCharm at the official documentation.

11.2 What to do when PyCharm does not find the dependencies

Note: This section is meant to help you troubleshoot if this ever happens to you. It can be safely skipped if you’re
following the tutorial for the first time.

Note: There might be ways to adjust the settings of PyCharm or other IDEs to save us from the trouble of having
to do this. Nonetheless, this is the one-size-fits-most solution, which should work for all past and future versions of
PyCharm.

If you have ruled out all issues related to your own code, it might be the case that the terminal in which you initially
ran PyCharm is unaware of certain changes to your ROS2 workspace.

To be sure that the current PyCharm session is updated without changes to any settings, do

1. Close PyCharm.

2. Build and source the ROS2 workspace.

cd ~/ros2_tutorial_workspace
colcon build
source install/setup.bash

Note: If you don’t remember why we’re building with these commands, see Always source after you build.

3. Re-open PyCharm.

pycharm_ros2

58 Chapter 11. Using PyCharm for ROS2 sources

https://www.jetbrains.com/help/pycharm/debugging-your-first-python-application.html#where-is-the-problem

CHAPTER

TWELVE

CREATING A PYTHON NODE FROM SCRATCH (FOR AMENT_PYTHON)

TL;DR Making an ament_python Node

1. Modify package.xml with any additional dependencies.

2. Create the Node.

3. Modify the setup.py file.

Let us add an additional Node to our ament_python package that actually uses ROS2 functionality. These are the
steps that must be taken, in general, to add a new Node.

12.1 Handling dependencies (package.xml)

The package.xml was automatically generated by ros2 pkg create and holds basic information about the package.

One important role of package.xml is to declare dependencies with other ROS2 packages. It is common for new Nodes
to have additional dependencies, so we will cover that here. For any ROS2 package, we must modify the package.xml
to add new dependencies.

In this toy example, let us add rclpy as a dependency because it is the Python implementation of the RCL (ROS Client
Library). All Nodes that use anything related to ROS2 will directly or indirectly depend on that library.

By no coincidence, the package.xml has the .xml extension, meaning that it is written in XML (Extensible Markup
Language).

Let us add the dependency between the <license> and <test_depend> tags. This is not a strict requirement but is
where it commonly is for standard packages.

~/ros2_tutorial_workspace/src/python_package_with_a_node/package.xml

1 <?xml version="1.0"?>
2 <?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens=

→˓"http://www.w3.org/2001/XMLSchema"?>
3 <package format="3">
4 <name>python_package_with_a_node</name>
5 <version>0.0.0</version>
6 <description>TODO: Package description</description>
7 <maintainer email="murilomarinho@ieee.org">murilo</maintainer>
8 <license>TODO: License declaration</license>
9

10 <depend>rclpy</depend>
(continues on next page)

59

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

11

12 <test_depend>ament_copyright</test_depend>
13 <test_depend>ament_flake8</test_depend>
14 <test_depend>ament_pep257</test_depend>
15 <test_depend>python3-pytest</test_depend>
16

17 <export>
18 <build_type>ament_python</build_type>
19 </export>
20 </package>

12.2 After you modify the workspace, build it once

After you add a new dependency to package.xml, nothing really changes in the workspace unless a new build is
performed.

In addition, when programming with new dependencies, unless you rebuild the workspace, PyCharm will not recognize
the libraries, and autocomplete will not work.

So,

1. close PyCharm.

2. Run (in the terminal you used to run PyCharm before)

cd ~/ros2_tutorial_workspace
colcon build
source install/setup.bash

Note: If you don’t remember why we’re building with these commands, see Always source after you build.

3. Re-open pycharm

pycharm_ros2

12.3 Creating the Node

In the directory src/python_package_with_a_node/python_package_with_a_node, create a new file called
print_forever_node.py. Copy and paste the following contents into the file.

~/ros2_tutorial_workspace/src/python_package_with_a_node/python_package_with_a_node/
print_forever_node.py

1 import rclpy
2 from rclpy.node import Node
3

4

5 class PrintForever(Node):
6 """A ROS2 Node that prints to the console periodically."""

(continues on next page)

60 Chapter 12. Creating a Python Node from scratch (for ament_python)

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

7

8 def __init__(self):
9 super().__init__('print_forever')

10 timer_period: float = 0.5
11 self.timer = self.create_timer(timer_period, self.timer_callback)
12 self.print_count: int = 0
13

14 def timer_callback(self):
15 """Method that is periodically called by the timer."""
16 self.get_logger().info(f'Printed {self.print_count} times.')
17 self.print_count = self.print_count + 1
18

19

20 def main(args=None):
21 """
22 The main function.
23 :param args: Not used directly by the user, but used by ROS2 to configure
24 certain aspects of the Node.
25 """
26 try:
27 rclpy.init(args=args)
28

29 print_forever_node = PrintForever()
30

31 rclpy.spin(print_forever_node)
32 except KeyboardInterrupt:
33 pass
34 except Exception as e:
35 print(e)
36

37

38 if __name__ == '__main__':
39 main()

By now, this should be enough for you to be able to run the node in PyCharm. You can right-click it and choose Debug
print_forever_node. This will output

[INFO] [1683009340.877110693] [print_forever]: Printed 0 times.
[INFO] [1683009341.336559942] [print_forever]: Printed 1 times.
[INFO] [1683009341.836334639] [print_forever]: Printed 2 times.
[INFO] [1683009342.336555088] [print_forever]: Printed 3 times.

To finish, press the Stop button or press CTRL+F2 on PyCharm. The node will exit gracefully with

Process finished with exit code 0

12.3. Creating the Node 61

ROS2 Tutorial, Release October 03, 2023

12.4 Making ros2 run work

Even though you can run the new node in PyCharm, we need an additional step to make it deployable in a place where
ros2 run can find it.

To do so, we modify the console_scripts key in the entry_points dictionary defined in setup.py, to have our
new node, as follows

Hint: console_scripts expects a list of str in a specific format. Hence, follow the format properly and don’t
forget the commas to separate elements in the list.

~/ros2_tutorial_workspace/src/python_package_with_a_node/setup.py

1 from setuptools import setup
2

3 package_name = 'python_package_with_a_node'
4

5 setup(
6 name=package_name,
7 version='0.0.0',
8 packages=[package_name],
9 data_files=[

10 ('share/ament_index/resource_index/packages',
11 ['resource/' + package_name]),
12 ('share/' + package_name, ['package.xml']),
13],
14 install_requires=['setuptools'],
15 zip_safe=True,
16 maintainer='murilo',
17 maintainer_email='murilomarinho@ieee.org',
18 description='TODO: Package description',
19 license='TODO: License declaration',
20 tests_require=['pytest'],
21 entry_points={
22 'console_scripts': [
23 'sample_python_node = python_package_with_a_node.sample_python_node:main',
24 'print_forever_node = python_package_with_a_node.print_forever_node:main'
25],
26 },
27)

The format is straightforward, as follows

print_forever_node The name of the node when calling it through ros2 run.
python_package_with_a_node The name of the package.
print_forever_node The name of the script, without the .py extension.
main The function, within the script, that will be called. In general, main.

Once again, we have to refresh the workspace so we run

62 Chapter 12. Creating a Python Node from scratch (for ament_python)

ROS2 Tutorial, Release October 03, 2023

cd ~/ros2_tutorial_workspace
colcon build
source install/setup.bash

Note: If you don’t remember why we’re building with these commands, see Always source after you build.

And, with that, we can run

ros2 run python_package_with_a_node print_forever_node

which will output, as expected

[INFO] [1683010987.130432622] [print_forever]: Printed 0 times.
[INFO] [1683010987.622780292] [print_forever]: Printed 1 times.
[INFO] [1683010988.122731296] [print_forever]: Printed 2 times.
[INFO] [1683010988.622735422] [print_forever]: Printed 3 times.

To stop, press CTRL+C on the terminal and the Node will return gracefully.

12.4. Making ros2 run work 63

ROS2 Tutorial, Release October 03, 2023

64 Chapter 12. Creating a Python Node from scratch (for ament_python)

CHAPTER

THIRTEEN

THE PYTHON NODE, EXPLAINED

Note: The way that a Python Node in ROS2 works, i.e. the explanation in this section, does not depend on the building
with ament_python or ament_cmake.

In a strict sense, the print_forever_node.py is not a minimal Node, but it does showcase most good practices in a
Node that actually does something.

13.1 The imports

import rclpy
from rclpy.node import Node

As in any Python code, we have to import the libraries that we will use and specific modules/classes within those
libraries. With rclpy, there is no difference.

13.2 Making a subclass of Node

The current version of ROS2 behaves better when your custom Node is a subclass of rclpy.node.Node. That is
achieved with

class PrintForever(Node):
"""A ROS2 Node that prints to the console periodically."""

def __init__(self):
super().__init__('print_forever')
timer_period: float = 0.5

About inheritance in Python, you can check the official documentation on inheritance and on super().

In more advanced nodes, inheritance does not cut it, but that is an advanced topic to be covered some other time.

65

https://docs.python.org/3/tutorial/classes.html#inheritance
https://docs.python.org/3/library/functions.html#super

ROS2 Tutorial, Release October 03, 2023

13.3 Use a Timer for periodic work (when using rclpy.spin())

Tips for the future you

If the code relies on rclpy.spin(), a Timer must be used for periodic work.

In its most basic usage, periodic tasks in ROS2 must be handled by a Timer.

To do so, have the node create it with the create_timer() method, as follows.

def __init__(self):
super().__init__('print_forever')
timer_period: float = 0.5
self.timer = self.create_timer(timer_period, self.timer_callback)
self.print_count: int = 0

The method that is periodically called by the Timer is, in this case, as follows. We use self.get_logger().info()
to print to the terminal periodically.

def timer_callback(self):
"""Method that is periodically called by the timer."""
self.get_logger().info(f'Printed {self.print_count} times.')

In ROS2, the logging methods, i.e. self.get_logger().info(), are methods of the Node itself. So, the capability
to log (print to the terminal) using ROS2 Nodes is dependent on the scope in which that Node exists.

13.4 Where the ROS2 magic happens: rclpy.init() and rclpy.
spin()

All the ROS2 magic happens in some sort of spin() method. It is called this way because the spin() method will
constantly loop (or spin) through items of work, e.g. scheduled Timer callbacks. All the items of work will only be
effectively executed when an executor runs through it. For simple Nodes, such as the one in this example, the global
executor is implicitly used. You can read a bit more about that here.

Anyhow, the point is that nothing related to ROS2 will happen unless the two following methods are called. First,
rclpy.init() is going to initialize a bunch of ROS2 elements behind the curtains, whereas rclpy.spin() will
block the program and, well, spin through Timer callbacks forever. There are alternative ways to spin(), but we will
not discuss them right now.

def main(args=None):
"""
The main function.
:param args: Not used directly by the user, but used by ROS2 to configure
certain aspects of the Node.
"""
try:

rclpy.init(args=args)

print_forever_node = PrintForever()

rclpy.spin(print_forever_node)
(continues on next page)

66 Chapter 13. The Python Node, explained

https://github.com/ros2/rclpy/blob/humble/rclpy/src/rclpy/timer.hpp
https://docs.ros2.org/foxy/api/rclpy/api/init_shutdown.html
https://en.wikipedia.org/wiki/Blocking_(computing)

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

except KeyboardInterrupt:
pass

except Exception as e:
print(e)

13.5 Have a try-catch block for KeyboardInterrupt

In the current version of the official ROS2 examples, for reasons beyond my comprehension, this step is not followed.

However, when running Nodes either in the terminal or in PyCharm, catching a KeyboardInterrupt is the only
reliable way to finish the Nodes cleanly. A KeyboardInterrupt is emitted at a terminal by pressing CTRL+C, whereas
it is emitted by PyCharm when pressing Stop.

That is particularly important when real robots need to be gracefully shut down (otherwise they might inadvertently
start the evil robot uprising), but it also looks unprofessional when all your Nodes return with an ugly stack trace.

def main(args=None):
"""
The main function.
:param args: Not used directly by the user, but used by ROS2 to configure
certain aspects of the Node.
"""
try:

rclpy.init(args=args)

print_forever_node = PrintForever()

rclpy.spin(print_forever_node)
except KeyboardInterrupt:

pass
except Exception as e:

print(e)

13.6 Document your code with Docstrings

As simple as a code might look for you right now, it needs to be documented for anyone you work with, including the
future you. In a few weeks/months/years time, the BeStNoDeYouEvErWrote (TM) might be indistinguishable from
Yautja Language.

Add as much description as possible to classes and methods, using the Docstring Convention.

Example of a class:

class PrintForever(Node):
"""A ROS2 Node that prints to the console periodically."""

Example of a method:

def timer_callback(self):
"""Method that is periodically called by the timer."""

13.5. Have a try-catch block for KeyboardInterrupt 67

https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Writing-A-Simple-Py-Publisher-And-Subscriber.html
https://avp.fandom.com/wiki/Yautja_Language
https://peps.python.org/pep-0257/

ROS2 Tutorial, Release October 03, 2023

68 Chapter 13. The Python Node, explained

CHAPTER

FOURTEEN

CREATING A PYTHON LIBRARY (FOR AMENT_PYTHON)

Let us start, as already recommended in this tutorial, with a template by ros2 pkg create.

cd ~/ros2_tutorial_workspace/src
ros2 pkg create python_package_with_a_library \
--build-type ament_python \
--library-name sample_python_library

which outputs the forever beautiful wall of text we’re now used to, with a minor difference regarding the additional
library template, as highlighted below.

going to create a new package
package name: python_package_with_a_library
destination directory: /home/murilo/git/ROS2_Tutorial/ros2_tutorial_workspace/src
package format: 3
version: 0.0.0
description: TODO: Package description
maintainer: ['murilo <murilomarinho@ieee.org>']
licenses: ['TODO: License declaration']
build type: ament_python
dependencies: []
library_name: sample_python_library
creating folder ./python_package_with_a_library
creating ./python_package_with_a_library/package.xml
creating source folder
creating folder ./python_package_with_a_library/python_package_with_a_library
creating ./python_package_with_a_library/setup.py
creating ./python_package_with_a_library/setup.cfg
creating folder ./python_package_with_a_library/resource
creating ./python_package_with_a_library/resource/python_package_with_a_library
creating ./python_package_with_a_library/python_package_with_a_library/__init__.py
creating folder ./python_package_with_a_library/test
creating ./python_package_with_a_library/test/test_copyright.py
creating ./python_package_with_a_library/test/test_flake8.py
creating ./python_package_with_a_library/test/test_pep257.py
creating folder ./python_package_with_a_library/python_package_with_a_library/sample_
→˓python_library
creating ./python_package_with_a_library/python_package_with_a_library/sample_python_
→˓library/__init__.py

[WARNING]: Unknown license 'TODO: License declaration'. This has been set in the␣
→˓package.xml, but no LICENSE file has been created.

(continues on next page)

69

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

It is recommended to use one of the ament license identitifers:
Apache-2.0
BSL-1.0
BSD-2.0
BSD-2-Clause
BSD-3-Clause
GPL-3.0-only
LGPL-3.0-only
MIT
MIT-0

14.1 The folders/files, Mason, what do they mean?

The ROS2 package created from the template has a structure like so. In particular, we can see that
python_package_with_a_library is repeated twice in a row. This is a common source of error, so don’t forget!

python_package_with_a_library
python_package_with_a_library

sample_python_library
__init__.py

__init__.py
resource

python_package_with_a_library
test

package.xml
setup.cfg
setup.py

We learned the meaning of most of those in the preamble, namely (Murilo’s) Python Best Practices. To quickly clarify
a few things, see the table below.

Table 1: ROS2 Python package folders/files explained

File/Directory Meaning
python_package_with_a_library The ROS2 package folder.
python_package_with_a_library/
python_package_with_a_library

The Python package, as we saw in the preamble.

sample_python_library The module corresponding to our sample library.
resource/python_package_with_a_library A file for ROS2 to index this package correctly. See Re-

source file.
test The folder contaning the tests, as we already saw in the

preamble.
setup.cfg Used by setup.py, see setup.cfg docs.
setup.py The instructions to make the package installable, as we

saw in the preamble.

70 Chapter 14. Creating a Python Library (for ament_python)

https://answers.ros.org/question/367328/ament_python-package-doesnt-explicitly-install-a-marker-in-the-package-index/
https://answers.ros.org/question/367328/ament_python-package-doesnt-explicitly-install-a-marker-in-the-package-index/
https://docs.python.org/3.10/distutils/configfile.html

ROS2 Tutorial, Release October 03, 2023

14.2 Overview of the library

Hint: If you have created the bad habit of declaring all/too many things in your __init__.py file, take the hint
and start breaking the definitions into different files and use the __init__.py just to export the relevant parts of your
library.

For the sake of the example, let us create a library with a Python function and another one with a class. To guide
our next steps, we first draw a quick overview of what our python_package_with_a_library will look like.

python_package_with_a_library
python_package_with_a_library

sample_python_library
__init__.py
_sample_class.py
_sample_function.py

__init__.py
resource
test

With respect to the highlighted files, we will

1. Create the _sample_function.py.

2. Create the _sample_class.py.

3. Modify __init__.py to use the new function and class.

All other files and directories will remain as-is, in the way they were generated by ros2 pkg create.

14.3 Create the sample function

Create a new file with the following contents and name.

~/ros2_tutorial_workspace/src/python_package_with_a_library/python_package_with_a_library/
sample_python_library/_sample_function.py

1 def sample_function_for_square_of_sum(a: float, b: float) -> float:
2 """Returns the square of a sum (a + b)^2 = a^2 + 2ab + b^2"""
3 return a**2 + 2*a*b + b**2

The function has two parameters, a and b. For simplicity, we’re expecting arguments of type float and returning a
float, but it could be any Python function.

14.2. Overview of the library 71

ROS2 Tutorial, Release October 03, 2023

14.4 Create the sample class

Create a new file with the following contents and name.

~/ros2_tutorial_workspace/src/python_package_with_a_library/python_package_with_a_library/
sample_python_library/_sample_class.py

1 class SampleClass:
2 """A sample class to check how they can be imported by other ROS2 packages."""
3

4 def __init__(self, name: str):
5 self._name = name
6

7 def get_name(self) -> str:
8 """
9 Gets the name of this instance.

10 :return: This name.
11 """
12 return self._name

The class is quite simple with a private data member and a method to retrieve it.

14.5 Modify the __init__.py to export the symbols

With the necessary files created and properly organized, the last step is to import the function and the class. We modify
proper __init__.py file with the following contents.

~/ros2_tutorial_workspace/src/python_package_with_a_library/python_package_with_a_library/
sample_python_library/__init__.py

1 from python_package_with_a_library.sample_python_library._sample_class import SampleClass
2 from python_package_with_a_library.sample_python_library._sample_function import sample_

→˓function_for_square_of_sum

14.6 Modify the setup.py to export the packages

Warning: This step might be unnecessary after this fix.

Note: This is a one-size-fits-most solution, which might not work for certain Python package structures. As a generic
solution, we will export all Python packages in the ROS2 package excluding the test directory. For more information
on setuptools, see the official Python packaging docs.

~/ros2_tutorial_workspace/src/python_package_with_a_library/setup.py

1 from setuptools import setup, find_packages
2

3 package_name = 'python_package_with_a_library'
(continues on next page)

72 Chapter 14. Creating a Python Library (for ament_python)

https://docs.python.org/3/tutorial/classes.html#private-variables
https://github.com/ros2/ros2cli/issues/833
https://packaging.python.org/en/latest/guides/distributing-packages-using-setuptools/

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

4

5 setup(
6 name=package_name,
7 version='0.0.0',
8 packages=find_packages(exclude=['test']),
9 data_files=[

10 ('share/ament_index/resource_index/packages',
11 ['resource/' + package_name]),
12 ('share/' + package_name, ['package.xml']),
13],
14 install_requires=['setuptools'],
15 zip_safe=True,
16 maintainer='murilo',
17 maintainer_email='murilomarinho@ieee.org',
18 description='TODO: Package description',
19 license='TODO: License declaration',
20 tests_require=['pytest'],
21 entry_points={
22 'console_scripts': [
23],
24 },
25)

14.7 Build and source

No surprise here, right?

cd ~/ros2_tutorial_workspace
colcon build
source install/setup.bash

Note: If you don’t remember why we’re building with these commands, see Always source after you build.

If it builds without any unexpected issues, we’re good to go!

14.7. Build and source 73

ROS2 Tutorial, Release October 03, 2023

74 Chapter 14. Creating a Python Library (for ament_python)

CHAPTER

FIFTEEN

USING A PYTHON LIBRARY FROM ANOTHER PACKAGE (FOR
AMENT_PYTHON)

Let us create a package with a Node that uses the library we created in the prior example.

Note that we must add the python_package_with_a_library as a dependency to our new package. The easiest
way to do so is through ros2 pkg create. We also add rclcpp as a dependency so that our Node can do something
useful.

cd ~/ros2_tutorial_workspace/src
ros2 pkg create python_package_that_uses_the_library \
--dependencies rclpy python_package_with_a_library \
--build-type ament_python \
--node-name node_that_uses_the_library

resulting in yet another version of our favorite wall of text

going to create a new package
package name: python_package_that_uses_the_library
destination directory: /home/murilo/ros2_tutorial_workspace/src
package format: 3
version: 0.0.0
description: TODO: Package description
maintainer: ['murilo <murilomarinho@ieee.org>']
licenses: ['TODO: License declaration']
build type: ament_python
dependencies: ['rclpy', 'python_package_with_a_library']
node_name: node_that_uses_the_library
creating folder ./python_package_that_uses_the_library
creating ./python_package_that_uses_the_library/package.xml
creating source folder
creating folder ./python_package_that_uses_the_library/python_package_that_uses_the_
→˓library
creating ./python_package_that_uses_the_library/setup.py
creating ./python_package_that_uses_the_library/setup.cfg
creating folder ./python_package_that_uses_the_library/resource
creating ./python_package_that_uses_the_library/resource/python_package_that_uses_the_
→˓library
creating ./python_package_that_uses_the_library/python_package_that_uses_the_library/__
→˓init__.py
creating folder ./python_package_that_uses_the_library/test
creating ./python_package_that_uses_the_library/test/test_copyright.py
creating ./python_package_that_uses_the_library/test/test_flake8.py

(continues on next page)

75

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

creating ./python_package_that_uses_the_library/test/test_pep257.py
creating ./python_package_that_uses_the_library/python_package_that_uses_the_library/
→˓node_that_uses_the_library.py

[WARNING]: Unknown license 'TODO: License declaration'. This has been set in the␣
→˓package.xml, but no LICENSE file has been created.
It is recommended to use one of the ament license identitifers:
Apache-2.0
BSL-1.0
BSD-2.0
BSD-2-Clause
BSD-3-Clause
GPL-3.0-only
LGPL-3.0-only
MIT
MIT-0

15.1 The sample Node

Given that it was created from a template, the file python_package_that_uses_the_library/
python_package_that_uses_the_library/node_that_uses_the_library.py is currently mostly empty.
Let us replace its contents with

node_that_uses_the_library.py

1 import rclpy
2 from rclpy.node import Node
3 from python_package_with_a_library.sample_python_library import SampleClass, sample_

→˓function_for_square_of_sum
4

5

6 class NodeThatUsesTheLibrary(Node):
7 """A ROS2 Node that prints to the console periodically."""
8

9 def __init__(self):
10 super().__init__('node_that_uses_the_library')
11 timer_period: float = 0.5
12 self.timer = self.create_timer(timer_period, self.timer_callback)
13

14 def timer_callback(self):
15 """
16 Method that is periodically called by the timer.
17 Prints out the result of sample_function_for_square_of_sum of two random numbers,
18 followed by the result of SampleClass.get_name() for an instance created with
19 a ten-character-long ascii string of random characters.
20 """
21 a: float = random.uniform(0, 1)
22 b: float = random.uniform(1, 2)
23 c: float = sample_function_for_square_of_sum(a, b)
24 self.get_logger().info(f'sample_function_for_square_of_sum({a},{b}) returned {c}.

→˓')
(continues on next page)

76 Chapter 15. Using a Python Library from another package (for ament_python)

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

25

26 random_name_ascii: str = ''.join(random.choice(string.ascii_letters) for _ in␣
→˓range(10))

27 sample_class_with_random_name = SampleClass(name=random_name_ascii)
28 self.get_logger().info(f'sample_class_with_random_name.get_name() '
29 f'returned {sample_class_with_random_name.get_name()}.')
30

31

32 def main(args=None):
33 """
34 The main function.
35 :param args: Not used directly by the user, but used by ROS2 to configure
36 certain aspects of the Node.
37 """
38 try:
39 rclpy.init(args=args)
40

41 node_that_uses_the_library = NodeThatUsesTheLibrary()
42

43 rclpy.spin(node_that_uses_the_library)
44 except KeyboardInterrupt:
45 pass
46 except Exception as e:
47 print(e)
48

49

50 if __name__ == '__main__':
51 main()

Indeed, the most difficult part is to make and configure the library itself. After that, to use it in another package, it is
straightforward. We import the library.

import rclpy
from rclpy.node import Node
from python_package_with_a_library.sample_python_library import SampleClass, sample_
→˓function_for_square_of_sum

And then use the symbols we imported as we would with any other Python library.

def timer_callback(self):
"""
Method that is periodically called by the timer.
Prints out the result of sample_function_for_square_of_sum of two random numbers,
followed by the result of SampleClass.get_name() for an instance created with
a ten-character-long ascii string of random characters.
"""
a: float = random.uniform(0, 1)
b: float = random.uniform(1, 2)
c: float = sample_function_for_square_of_sum(a, b)
self.get_logger().info(f'sample_function_for_square_of_sum({a},{b}) returned {c}.

→˓')

(continues on next page)

15.1. The sample Node 77

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

random_name_ascii: str = ''.join(random.choice(string.ascii_letters) for _ in␣
→˓range(10))

sample_class_with_random_name = SampleClass(name=random_name_ascii)
self.get_logger().info(f'sample_class_with_random_name.get_name() '

f'returned {sample_class_with_random_name.get_name()}.')

15.2 Build and source

As always, this is needed so that our new package and node can be recognized by ros2 run.

cd ~/ros2_tutorial_workspace
colcon build
source install/setup.bash

Note: If you don’t remember why we’re building with these commands, see Always source after you build.

15.3 Run

Hint: Remember that you can stop the node at any time with CTRL+C.

ros2 run python_package_that_uses_the_library node_that_uses_the_library

Which outputs something similar to the shown below, but with different numbers and strings as they are randomized.

[INFO] [1683598288.149167944] [node_that_uses_the_library]: sample_function_for_square_
→˓of_sum(0.19395834493833486,1.3891603395040568) returned 2.506264769030609.
[INFO] [1683598288.149643378] [node_that_uses_the_library]: sample_class_with_random_
→˓name.get_name() returned qyOXLBEtzZ.
[INFO] [1683598288.616095880] [node_that_uses_the_library]: sample_function_for_square_
→˓of_sum(0.7387236329957096,1.7650481260672202) returned 6.2688730214810775.
[INFO] [1683598288.616604769] [node_that_uses_the_library]: sample_class_with_random_
→˓name.get_name() returned LCFNFyzwhk.
[INFO] [1683598289.116050219] [node_that_uses_the_library]: sample_function_for_square_
→˓of_sum(0.003813494022560704,1.7056916575839387) returned 2.9224078633691604.
[INFO] [1683598289.116553899] [node_that_uses_the_library]: sample_class_with_random_
→˓name.get_name() returned wrtTlOdanZ.

78 Chapter 15. Using a Python Library from another package (for ament_python)

CHAPTER

SIXTEEN

MESSAGES AND SERVICES (ROS2 INTERFACE)

If by now you haven’t particularly fallen in love with ROS2, fear not. Indeed, we haven’t done much so far that couldn’t
be achieved more easily by other means.

ROS2 begins to shine most in its interprocess communication, through what are called ROS2 interfaces. In particular,
the fact that we can easily interface Nodes written in Python and C++ is a strong selling point.

Messages are one of the three types of ROS2 interfaces. This will most likely be the standard of communication
between Nodes in your packages. We will also see the bidirectional Services now. The last type of interface, Actions,
is left for another section.

16.1 Description

In ROS2, interfaces are files written in the ROS2 IDL (Interface Description Language). Each type of interface is
described in a .msg file (or .srv file), which is then built by colcon into libraries that can be imported into your
Python programs.

When dealing with common robotics concepts such as geometric and sensor messages, it is good practice to use in-
terfaces that already exist in ROS2, instead of creating new ones that serve the exact same purpose. In addition, for
complicated interfaces, we can combine existing ones for simplicity.

16.2 Getting info on interfaces

We can get information about ROS2 interfaces available in our system with ros2 interface. Let us first get more
information about the program usage with

ros2 interface -h

which results in

usage: ros2 interface [-h] Call `ros2 interface <command> -h` for more detailed usage. ..
→˓.

Show information about ROS interfaces

options:
-h, --help show this help message and exit

Commands:
list List all interface types available

(continues on next page)

79

https://docs.ros.org/en/humble/Concepts/About-ROS-Interfaces.html

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

package Output a list of available interface types within one package
packages Output a list of packages that provide interfaces
proto Output an interface prototype
show Output the interface definition

Call `ros2 interface <command> -h` for more detailed usage.

This shows that with ros2 interface listwe can get a list of all interfaces available in our workspace. That returns
a huge list of interfaces, so it will not be replicated entirely here. Instead, we can run

ros2 interface packages

to get the list of packages with interfaces available, which returns something similar to

action_msgs
action_tutorials_interfaces
actionlib_msgs
builtin_interfaces
composition_interfaces
diagnostic_msgs
example_interfaces
geometry_msgs
lifecycle_msgs
logging_demo
map_msgs
nav_msgs
pcl_msgs
pendulum_msgs
rcl_interfaces
rmw_dds_common
rosbag2_interfaces
rosgraph_msgs
sensor_msgs
shape_msgs
statistics_msgs
std_msgs
std_srvs
stereo_msgs
tf2_msgs
trajectory_msgs
turtlesim
unique_identifier_msgs
visualization_msgs

From those, sensor_msgs and geometry_msgs are packages to always keep in mind when looking for a suitable
interface. It will help to keep your Nodes compatible with the community.

Warning: The std_msgs package, widely used in ROS1, is deprecated in ROS2 since Foxy. The
example_interfaces somewhat takes its place, but the recommended practice is to create “semantically mean-
ingful message types”. They might remove both or either of these in future versions, so do not use them.

As an example, let us take a look into the example_interfaces package, containing, as the name implies, example

80 Chapter 16. Messages and Services (ros2 interface)

ROS2 Tutorial, Release October 03, 2023

interface types. We can do so with

ros2 interface package example_interfaces

which returns

example_interfaces/msg/String
example_interfaces/srv/AddTwoInts
example_interfaces/srv/SetBool
example_interfaces/msg/UInt8
example_interfaces/msg/Int64MultiArray
example_interfaces/msg/Byte
example_interfaces/msg/Float32
example_interfaces/msg/Int64
example_interfaces/msg/UInt32MultiArray
example_interfaces/msg/Int32MultiArray
example_interfaces/msg/Empty
example_interfaces/msg/Float32MultiArray
example_interfaces/msg/Int16MultiArray
example_interfaces/action/Fibonacci
example_interfaces/msg/UInt16MultiArray
example_interfaces/msg/Int8MultiArray
example_interfaces/msg/Bool
example_interfaces/msg/ByteMultiArray
example_interfaces/msg/MultiArrayLayout
example_interfaces/msg/UInt8MultiArray
example_interfaces/msg/UInt16
example_interfaces/msg/Int16
example_interfaces/msg/Int8
example_interfaces/msg/MultiArrayDimension
example_interfaces/msg/Char
example_interfaces/msg/Float64
example_interfaces/srv/Trigger
example_interfaces/msg/UInt64
example_interfaces/msg/WString
example_interfaces/msg/Int32
example_interfaces/msg/Float64MultiArray
example_interfaces/msg/UInt64MultiArray
example_interfaces/msg/UInt32

16.3 Messages

For example, let’s say that we are interested in looking up the contents of example_interfaces/msg/String. We
can do so with ros2 interface show, like so

ros2 interface show example_interfaces/msg/String

which returns the contents of the source file used to create this message

This is an example message of using a primitive datatype, string.
If you want to test with this that's fine, but if you are deploying
it into a system you should create a semantically meaningful message type.

(continues on next page)

16.3. Messages 81

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

If you want to embed it in another message, use the primitive data type instead.
string data

Basically, the comments help to emphasize that interface types with too broad meaning are unloved in ROS2. Given
that these example interfaces are either unsupported or only loosely supported, do not rely on them.

The real content of the message file is string data, showing that it contains a single string called data. Using ros2
interface show on other example interfaces, it is easy to see how to build interesting message types to fit our needs.

16.4 Services

In the case of a service, let’s look up the contents of example_interfaces/srv/AddTwoInts.

We run

ros2 interface show example_interfaces/srv/AddTwoInts

that results in

int64 a
int64 b

int64 sum

Notice that the --- is what separates the Request, above, from the Response below. Anyone using this service would
expect that the result would be 𝑠𝑢𝑚 = 𝑎 + 𝑏, but this logic needs to be implemented on the Node. The service itself
is just a way of bidirectional communication.

82 Chapter 16. Messages and Services (ros2 interface)

CHAPTER

SEVENTEEN

CREATING A DEDICATED PACKAGE FOR CUSTOM INTERFACES

Warning: Despite this push in ROS2 towards having the users define even the simplest of message types, to
define new interfaces in ROS2 we must use an ament_cmake package. It cannot be done with an ament_python
package.

All interfaces in ROS2 must be made in an ament_cmake package. We have so far not needed it, but for this scenario
we cannot escape. Thankfully, for this we don’t need to dig too deep into CMake, so fear not.

17.1 Creating the package

There isn’t a template for message-only packages using ros2 pkg create. We’ll need to build on top of a mostly
empty ament_cmake package.

To take this chance to also learn how to nest messages on other interfaces, we also add the dependency on
geometry_msgs.

cd ~/ros2_tutorial_workspace/src
ros2 pkg create package_with_interfaces \
--build-type ament_cmake \
--dependencies geometry_msgs

which again shows our beloved wall of text, with a few highlighted differences because of it being a ament_cmake
package.

going to create a new package
package name: package_with_interfaces
destination directory: /home/murilo/git/ROS2_Tutorial/ros2_tutorial_workspace/src
package format: 3
version: 0.0.0
description: TODO: Package description
maintainer: ['murilo <murilomarinho@ieee.org>']
licenses: ['TODO: License declaration']
build type: ament_cmake
dependencies: [geometry_msgs]
creating folder ./package_with_interfaces
creating ./package_with_interfaces/package.xml
creating source and include folder
creating folder ./package_with_interfaces/src
creating folder ./package_with_interfaces/include/package_with_interfaces

(continues on next page)

83

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

creating ./package_with_interfaces/CMakeLists.txt

[WARNING]: Unknown license 'TODO: License declaration'. This has been set in the␣
→˓package.xml, but no LICENSE file has been created.
It is recommended to use one of the ament license identitifers:
Apache-2.0
BSL-1.0
BSD-2.0
BSD-2-Clause
BSD-3-Clause
GPL-3.0-only
LGPL-3.0-only
MIT
MIT-0

The package.xml works the same way as when using ament_python. However, we no longer have a setup.py or
setup.cfg, everything is handled by the CMakeLists.txt.

17.2 The package.xml dependencies

Whenever the package has any type of interface, the package.xml must include three specific dependencies. Namely,
the ones highlighted below. Edit the package_with_interfaces/package.xml like so

package.xml

1 <?xml version="1.0"?>
2 <?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens=

→˓"http://www.w3.org/2001/XMLSchema"?>
3 <package format="3">
4 <name>package_with_interfaces</name>
5 <version>0.0.0</version>
6 <description>TODO: Package description</description>
7 <maintainer email="murilomarinho@ieee.org">murilo</maintainer>
8 <license>TODO: License declaration</license>
9

10 <buildtool_depend>ament_cmake</buildtool_depend>
11

12 <depend>geometry_msgs</depend>
13

14 <buildtool_depend>rosidl_default_generators</buildtool_depend>
15 <exec_depend>rosidl_default_runtime</exec_depend>
16 <member_of_group>rosidl_interface_packages</member_of_group>
17

18 <test_depend>ament_lint_auto</test_depend>
19 <test_depend>ament_lint_common</test_depend>
20

21 <export>
22 <build_type>ament_cmake</build_type>
23 </export>
24 </package>

84 Chapter 17. Creating a dedicated package for custom interfaces

ROS2 Tutorial, Release October 03, 2023

17.3 The message folder

The convention is to add all messages to a folder called msg. Let’s follow that convention

cd ~/ros2_tutorial_workspace/src/package_with_interfaces
mkdir msg

17.4 The message file

Note: Here is a list of available built-in types for ROS2 interfaces.

Let us create a message file to transfer inspirational quotes between Nodes. For example, the one below.

Use the force, Pikachu!

—Uncle Ben

There are many ways to represent this, but for the sake of the example let us give each message an id and two rather
obvious fields. Create a file called AmazingQuote.msg in the folder msg that we just created with the following
contents.

AmazingQuote.msg

1 # AmazingQuote.msg from https://ros2-tutorial.readthedocs.io
2 # An inspirational quote a day keeps the therapist away
3 int32 id
4 string quote
5 string philosopher_name

17.5 The service folder

The convention is to add all services to a folder called srv. Let’s follow that convention

cd ~/ros2_tutorial_workspace/src/package_with_interfaces
mkdir srv

17.6 The service file

With the AmazingQuote.msg, we have seen how to use built-in types. Let’s use the service to learn two more possi-
bilities. Let us use a message from the same package and a message from another package. Services cannot be used to
define other services.

Add the file WhatIsThePoint.srv in the srv folder with the following contents

WhatIsThePoint.srv

17.3. The message folder 85

https://docs.ros.org/en/humble/Concepts/About-ROS-Interfaces.html#field-types

ROS2 Tutorial, Release October 03, 2023

1 # WhatIsThePoint.srv from https://ros2-tutorial.readthedocs.io
2 # Receives an AmazingQuote and returns what is the point
3 AmazingQuote quote
4 ---
5 geometry_msgs/Point point

Note that if the message is defined in the same package, the package name does not appear in the service or message
definition. If the message is defined elsewhere, we have to specify it.

17.7 The CMakeLists.txt directives

Note: The order of the CMake directives is very important and getting the order wrong can result in bugs with cryptic
error messages.

If a package is dedicated to interfaces, there is no need to worry too much about the CMake details. We can follow the
boilerplate as shown below. Edit the package_with_interfaces/CMakeLists.txt like so

CMakeLists.txt

1 cmake_minimum_required(VERSION 3.8)
2 project(package_with_interfaces)
3

4 if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
5 add_compile_options(-Wall -Wextra -Wpedantic)
6 endif()
7

8 # find dependencies
9 find_package(ament_cmake REQUIRED)

10 find_package(geometry_msgs REQUIRED)
11 # uncomment the following section in order to fill in
12 # further dependencies manually.
13 # find_package(<dependency> REQUIRED)
14 find_package(rosidl_default_generators REQUIRED)
15

16 #### ROS2 Interface Directives ####
17 set(interface_files
18 # Messages
19 "msg/AmazingQuote.msg"
20

21 # Services
22 "srv/WhatIsThePoint.srv"
23

24)
25

26 rosidl_generate_interfaces(${PROJECT_NAME}
27 ${interface_files}
28 DEPENDENCIES
29 geometry_msgs
30

31)
(continues on next page)

86 Chapter 17. Creating a dedicated package for custom interfaces

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

32

33 ament_export_dependencies(
34 rosidl_default_runtime
35)
36 #### ROS2 Interface Directives [END] ####
37

38 if(BUILD_TESTING)
39 find_package(ament_lint_auto REQUIRED)
40 # the following line skips the linter which checks for copyrights
41 # comment the line when a copyright and license is added to all source files
42 set(ament_cmake_copyright_FOUND TRUE)
43 # the following line skips cpplint (only works in a git repo)
44 # comment the line when this package is in a git repo and when
45 # a copyright and license is added to all source files
46 set(ament_cmake_cpplint_FOUND TRUE)
47 ament_lint_auto_find_test_dependencies()
48 endif()
49

50 ament_package()

17.8 What to do when adding new interfaces?

TL;DR Adding new interfaces

1. Add new dependencies to package.xml

2. Add each new interface file to set(interface_files ...)

3. Add new dependencies to rosidl_generate_interfaces(... DEPENDENCIES ...)

Yes, you MUST add the same dependency in two places!

If additional interfaces are required

1. Modify the package.xml to have any additional dependencies. See Handling dependencies (package.xml) for
more details.

2. Add each new interface file to set(interface_files ...)

set(interface_files
Messages
"msg/AmazingQuote.msg"

Services
"srv/WhatIsThePoint.srv"

)

Note: There are ways to use CMake directives to automatically add all files in a given folder and provide other conve-
niences. In hindsight, that might seem to reduce our burden. However, the method described herein is the one used in

17.8. What to do when adding new interfaces? 87

ROS2 Tutorial, Release October 03, 2023

the official ROS2 packages (e.g. geometry_msgs), so let us trust that they have good reasons for it.

17.9 Build and source

Before we proceed, let us build and source once.

cd ~/ros2_tutorial_workspace
colcon build
source install/setup.bash

Note: If you don’t remember why we’re building with these commands, see Always source after you build.

17.10 Getting info on custom interfaces

As long as the package has been correctly built and sourced, we can easily get information on its interfaces using ros2
interface.

For instance, running

ros2 interface package package_with_interfaces

returns

package_with_interfaces/srv/WhatIsThePoint
package_with_interfaces/msg/AmazingQuote

and we can further get more specific info on AmazingQuote.msg

ros2 interface show package_with_interfaces/msg/AmazingQuote

which returns

AmazingQuote.msg from https://ros2-tutorial.readthedocs.io
An inspirational quote a day keeps the therapist away
int32 id
string quote
string philosopher_name

alternatively, we can do the same for WhatIsThePoint.srv

ros2 interface show package_with_interfaces/srv/WhatIsThePoint

which returns expanded information on each field of the service

WhatIsThePoint.srv from https://ros2-tutorial.readthedocs.io
Receives an AmazingQuote and returns what is the point
AmazingQuote quote

int32 id
string quote

(continues on next page)

88 Chapter 17. Creating a dedicated package for custom interfaces

https://github.com/ros2/common_interfaces/blob/f4eac72f0bbd70f7955a5f709d4a6705eb6ca7e8/geometry_msgs/CMakeLists.txt

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

string philosopher_name

geometry_msgs/Point point

float64 x
float64 y
float64 z

17.10. Getting info on custom interfaces 89

ROS2 Tutorial, Release October 03, 2023

90 Chapter 17. Creating a dedicated package for custom interfaces

CHAPTER

EIGHTEEN

PUBLISHERS AND SUBSCRIBERS: USING MESSAGES

Note: Except for the particulars of the setup.py file, the way that publishers and subscribers in ROS2 work in Python,
i.e. the explanation in this section, does not depend on ament_python or ament_cmake.

Finally, we reached the point where ROS2 becomes appealing. As you saw in the last section, we can easily create com-
plex interface types using an easy and generic description. We can use those to provide interprocess communication,
i.e. two different programs talking to each other, which otherwise can be error-prone and very difficult to implement.

ROS2 works on a model in which any number of processes can communicate over a Topic that only accepts one
message type. Each topic is uniquely identified by a string.

Then

• A program that sends (publishes) information to the topic has a Publisher.

• A program that reads (subscribes) information from a topic has a Subscriber.

Each Node can have any number of Publishers and Subscribers and a combination thereof, connecting to an
arbitrary number of Nodes. This forms part of the connections in the so-called ROS graph.

18.1 Create the package

First, let us create an ament_python package that depends on our newly developed packages_with_interfaces
and build from there.

cd ~/ros2_tutorial_workspace/src
ros2 pkg create python_package_that_uses_the_messages \
--build-type ament_python \
--dependencies rclpy package_with_interfaces

18.2 Overview

Note: By no coincidence, I am using the terminology Node with a publisher, and Node with a subscriber. In general,
each Node will have a combination of publishers, subscribers, and other interfaces.

Before we start exploring the elements of the package, let us

1. Create the Node with a publisher.

91

https://en.wikipedia.org/wiki/Inter-process_communication
https://docs.ros.org/en/humble/Concepts.html#quick-overview-of-ros-2-concepts

ROS2 Tutorial, Release October 03, 2023

2. Create the Node with a subscriber.

3. Update the setup.py so that ros2 run finds these programs.

18.3 Create the Node with a publisher

TL;DR Creating a publisher

1. Add new dependencies to package.xml

2. Import new messages from <package_name>.msg import <msg_name>

3. In a subclass of Node

1. Create a publisher with self.publisher = self.create_publisher(...)

2. Send messages with self.publisher.publish(....)

4. Add the new Node to setup.py

For the publisher, create a file in python_package_that_uses_the_messages/
python_package_that_uses_the_messages called amazing_quote_publisher_node.py, with the following
contents

amazing_quote_publisher_node.py

1 import rclpy
2 from rclpy.node import Node
3 from package_with_interfaces.msg import AmazingQuote
4

5

6 class AmazingQuotePublisherNode(Node):
7 """A ROS2 Node that publishes an amazing quote."""
8

9 def __init__(self):
10 super().__init__('amazing_quote_publisher_node')
11

12 self.amazing_quote_publisher = self.create_publisher(
13 msg_type=AmazingQuote,
14 topic='/amazing_quote',
15 qos_profile=1)
16

17 timer_period: float = 0.5
18 self.timer = self.create_timer(timer_period, self.timer_callback)
19

20 self.incremental_id: int = 0
21

22 def timer_callback(self):
23 """Method that is periodically called by the timer."""
24

25 amazing_quote = AmazingQuote()
26 amazing_quote.id = self.incremental_id
27 amazing_quote.quote = 'Use the force, Pikachu!'
28 amazing_quote.philosopher_name = 'Uncle Ben'

(continues on next page)

92 Chapter 18. Publishers and Subscribers: using messages

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

29

30 self.amazing_quote_publisher.publish(amazing_quote)
31

32 self.incremental_id = self.incremental_id + 1
33

34

35 def main(args=None):
36 """
37 The main function.
38 :param args: Not used directly by the user, but used by ROS2 to configure
39 certain aspects of the Node.
40 """
41 try:
42 rclpy.init(args=args)
43

44 amazing_quote_publisher_node = AmazingQuotePublisherNode()
45

46 rclpy.spin(amazing_quote_publisher_node)
47 except KeyboardInterrupt:
48 pass
49 except Exception as e:
50 print(e)
51

52

53 if __name__ == '__main__':
54 main()

When we built our package_with_interfaces in the last section, what ROS2 did for us, among other things,
was create a Python library called package_with_interfaces.msg containing the Python implementation of the
AmazingQuote.msg. Because of that, we can use it by importing it like so

import rclpy
from rclpy.node import Node
from package_with_interfaces.msg import AmazingQuote

The publisher must be created with the Node.create_publisher(...) method, which has the three parameters
defined in the publisher and subscriber parameter table.

self.amazing_quote_publisher = self.create_publisher(
msg_type=AmazingQuote,
topic='/amazing_quote',
qos_profile=1)

msg_type A class, namely the message that will be used in the topic. In this case, AmazingQuote.
topic The topic through which the communication will occur. Can be arbitrarily chosen, but to make sense

/amazing_quote.
qos_profileThe simplest interpretation for this parameter is the number of messages that will be stored in the spin(.

..) takes too long to process them. (See more on docs for QoSProfile.)

18.3. Create the Node with a publisher 93

https://docs.ros.org/en/humble/Concepts/About-Quality-of-Service-Settings.html

ROS2 Tutorial, Release October 03, 2023

Warning: All the arguments in publisher and subscriber parameter table should be EXACTLY the same in the
Publishers and Subscribers of the same topic.

Then, each message is handled much like any other class in Python. We instantiate and initialize the message as follows

amazing_quote = AmazingQuote()
amazing_quote.id = self.incremental_id
amazing_quote.quote = 'Use the force, Pikachu!'
amazing_quote.philosopher_name = 'Uncle Ben'

Lastly, the message needs to be published using Node.publish(msg).

self.amazing_quote_publisher.publish(amazing_quote)

Note: In general, the message will NOT be published instantaneously after Node.publish() is called. It is usually
fast, but entirely dependent on rclpy.spin() and how much work it is doing.

18.4 Create the Node with a subscriber

TL;DR Creating a subscriber

1. Add new dependencies to package.xml

2. Import new messages from <package_name>.msg import <msg_name>

3. In a subclass of Node

1. Create a callback def callback(self, msg):

2. Create a subscriber self.subscriber = self.create_subscription(...)

4. Add the new Node to setup.py

For the subscriber Node, create a file in python_package_that_uses_the_messages/
python_package_that_uses_the_messages called amazing_quote_subscriber_node.py, with the following
contents

amazing_quote_subscriber_node.py

1 import rclpy
2 from rclpy.node import Node
3 from package_with_interfaces.msg import AmazingQuote
4

5

6 class AmazingQuoteSubscriberNode(Node):
7 """A ROS2 Node that receives and prints an amazing quote."""
8

9 def __init__(self):
10 super().__init__('amazing_quote_subscriber_node')
11 self.amazing_quote_subscriber = self.create_subscription(
12 msg_type=AmazingQuote,

(continues on next page)

94 Chapter 18. Publishers and Subscribers: using messages

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

13 topic='/amazing_quote',
14 callback=self.amazing_quote_subscriber_callback,
15 qos_profile=1)
16

17 def amazing_quote_subscriber_callback(self, msg: AmazingQuote):
18 """Method that is periodically called by the timer."""
19 self.get_logger().info(f"""
20 I have received the most amazing of quotes.
21 It says
22

23 '{msg.quote}'
24

25 And was thought by the following genius
26

27 -- {msg.philosopher_name}
28

29 This latest quote had the id={msg.id}.
30 """)
31

32

33 def main(args=None):
34 """
35 The main function.
36 :param args: Not used directly by the user, but used by ROS2 to configure
37 certain aspects of the Node.
38 """
39 try:
40 rclpy.init(args=args)
41

42 amazing_quote_subscriber_node = AmazingQuoteSubscriberNode()
43

44 rclpy.spin(amazing_quote_subscriber_node)
45 except KeyboardInterrupt:
46 pass
47 except Exception as e:
48 print(e)
49

50

51 if __name__ == '__main__':
52 main()

Similarly to the publisher, in the subscriber, we start by importing the message in question

import rclpy
from rclpy.node import Node
from package_with_interfaces.msg import AmazingQuote

Then, in our subclass of Node, we call Node.create_publisher(...) as follows

self.amazing_quote_subscriber = self.create_subscription(
msg_type=AmazingQuote,
topic='/amazing_quote',

(continues on next page)

18.4. Create the Node with a subscriber 95

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

callback=self.amazing_quote_subscriber_callback,
qos_profile=1)

where the only difference with respect to the publisher is the third argument, namely callback, in which a method that
receives a msg_type and returns nothing is expected. For example, the amazing_quote_subscriber_callback.

def amazing_quote_subscriber_callback(self, msg: AmazingQuote):
"""Method that is periodically called by the timer."""
self.get_logger().info(f"""
I have received the most amazing of quotes.
It says

'{msg.quote}'

And was thought by the following genius

-- {msg.philosopher_name}

This latest quote had the id={msg.id}.
""")

That callback method will be automatically called by ROS2, as one of the tasks performed by rclpy.spin(Node).
Depending on the qos_profile, it will not necessarily be the latest message.

Note: The message will ALWAYS take some time between being published and being received by the subscriber. The
speed in which that will happen will depend not only on this Node’s rclpy.spin(), but also on the rclpy.spin()
of the publisher node and the communication channel.

18.5 Update the setup.py

As we already learned in Making ros2 run work, we must adjust the setup.py to refer to the Nodes we just created.

setup.py

1 from setuptools import setup
2

3 package_name = 'python_package_that_uses_the_messages'
4

5 setup(
6 name=package_name,
7 version='0.0.0',
8 packages=[package_name],
9 data_files=[

10 ('share/ament_index/resource_index/packages',
11 ['resource/' + package_name]),
12 ('share/' + package_name, ['package.xml']),
13],
14 install_requires=['setuptools'],
15 zip_safe=True,
16 maintainer='murilo',

(continues on next page)

96 Chapter 18. Publishers and Subscribers: using messages

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

17 maintainer_email='murilomarinho@ieee.org',
18 description='TODO: Package description',
19 license='TODO: License declaration',
20 tests_require=['pytest'],
21 entry_points={
22 'console_scripts': [
23 'amazing_quote_publisher_node = python_package_that_uses_the_messages.

→˓amazing_quote_publisher_node:main',
24 'amazing_quote_subscriber_node = python_package_that_uses_the_messages.

→˓amazing_quote_subscriber_node:main'
25],
26 },
27)

18.6 Build and source

Before we proceed, let us build and source once.

cd ~/ros2_tutorial_workspace
colcon build
source install/setup.bash

Note: If you don’t remember why we’re building with these commands, see Always source after you build.

18.7 Testing Publisher and Subscriber

Whenever we need to open two or more terminal windows, remember that Terminator is life.

Let us open two terminals.

In the first terminal, we run

ros2 run python_package_that_uses_the_messages amazing_quote_publisher_node

Nothing, in particular, should happen now. The publisher is sending messages through the specific topic we defined,
but we need at least one subscriber to interact with those messages.

Hence, in the second terminal, we run

ros2 run python_package_that_uses_the_messages amazing_quote_subscriber_node

which outputs

[INFO] [1684215672.344532584] [amazing_quote_subscriber_node]:
I have received the most amazing of quotes.
It says

'Use the force, Pikachu!'
(continues on next page)

18.6. Build and source 97

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

And was thought by the following genius

-- Uncle Ben

This latest quote had the id=3.

[INFO] [1684215672.844618237] [amazing_quote_subscriber_node]:
I have received the most amazing of quotes.
It says

'Use the force, Pikachu!'

And was thought by the following genius

-- Uncle Ben

This latest quote had the id=4.

[INFO] [1684215673.344514856] [amazing_quote_subscriber_node]:
I have received the most amazing of quotes.
It says

'Use the force, Pikachu!'

And was thought by the following genius

-- Uncle Ben

This latest quote had the id=5.

Note: If there are any issues with either the publisher or the subscriber, this connection will not work. In the next
section, we’ll see strategies to help us troubleshoot and understand communication through topics.

Warning: Unless instructed otherwise, the publisher does NOT wait for a subscriber to connect before it starts
publishing the messages. As shown in the case above, the first message we received started with id=3. If we delayed
longer to start the publisher, we would have received later messages only.

Let’s close each node with CTRL+C on each terminal before we proceed to the next tutorial.

98 Chapter 18. Publishers and Subscribers: using messages

CHAPTER

NINETEEN

INSPECTING TOPICS (ROS2 TOPIC)

ROS2 has a tool to help us inspect topics. This is used with considerable frequency in practice to troubleshoot and
speed up the development of publishers and subscribers. As usual, we can get more information on this tool as follows.

ros2 topic -h

which outputs the detailed information of the tool, as shown below. In particular, the highlighted fields are used quite
frequently in practice.

usage: ros2 topic [-h]
[--include-hidden-topics]
Call `ros2 topic <command>
-h` for more detailed usage.
...

Various topic related sub-commands

options:
-h, --help show this help message

and exit
--include-hidden-topics

Consider hidden topics
as well

Commands:
bw Display bandwidth used by topic
delay Display delay of topic from timestamp in header
echo Output messages from a topic
find Output a list of available topics of a given type
hz Print the average publishing rate to screen
info Print information about a topic
list Output a list of available topics
pub Publish a message to a topic
type Print a topic's type

Call `ros2 topic <command> -h` for more detailed usage.

99

ROS2 Tutorial, Release October 03, 2023

19.1 Start a publisher

During the development of a publisher, it is extremely useful to be able to check if topics are being properly made
before we venture into making the subscribers. To see some of the tools for this job, we start by running the publisher
Node we wrote in the last section.

Warning: Be sure to terminate the Nodes we used in the past section before proceeding (e.g. with CTRL+C),
otherwise, the output will look different from what is described here.

ros2 run python_package_that_uses_the_messages amazing_quote_publisher_node

19.2 Getting all topics with ros2 topic list

In particular, when there are many topics, it is difficult to remember every name. To see all currently active topics, we
can run

ros2 topic list

which, in this case, outputs

/amazing_quote
/parameter_events
/rosout

showing, in particular, the /amazing_quote topic what we were looking for.

Hint: The ros2 topic info is one of the main tools to find out typos in the names of topics. For example, if there
was a typo in our topic we might find, in fact, two topics being listed, when we only expected one. For instance,

/amazing_quote
/amazing_quotes
/parameter_events
/rosout

19.3 grep is your new best friend

Note: If you want more information on grep, check the Ubuntu Manpage

When the list of topics is too large, we can use grep to help filter the output. E.g.

ros2 topic list | grep quote

which outputs only the lines that contain quote, that is

100 Chapter 19. Inspecting topics (ros2 topic)

https://manpages.ubuntu.com/manpages/bionic/en/man1/grep.1.html

ROS2 Tutorial, Release October 03, 2023

/amazing_quote

19.4 Getting quick info with ros2 topic info

To get some quick information on a topic, we can run

ros2 topic info /amazing_quote

which outputs the message type and the number of publishers and subscribers connected to that topic

Type: package_with_interfaces/msg/AmazingQuote
Publisher count: 1
Subscription count: 0

19.5 Checking topic contents with ros2 topic echo

The ros2 topic echo is the main tool that we can use to inspect topic activity. We can check all the options of ros2
topic echo with the command below. The output is quite long so it’s not replicated here.

ros2 topic echo -h

To inspect the topic whose name we already know, we run

ros2 topic echo /amazing_quote

which outputs the following

id: 6
quote: Use the force, Pikachu!
philosopher_name: Uncle Ben

id: 7
quote: Use the force, Pikachu!
philosopher_name: Uncle Ben

id: 8
quote: Use the force, Pikachu!
philosopher_name: Uncle Ben

id: 9
quote: Use the force, Pikachu!
philosopher_name: Uncle Ben

id: 10
quote: Use the force, Pikachu!
philosopher_name: Uncle Ben

id: 11
quote: Use the force, Pikachu!

(continues on next page)

19.4. Getting quick info with ros2 topic info 101

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

philosopher_name: Uncle Ben

19.6 grep is still your best friend

Whenever the topic is too crowded or the messages too fast, it might be difficult to pinpoint a single field we are looking
for. In that case, grep can also help.

For example let us say that we want to see only the id fields of the messages. We can do

ros2 topic echo /amazing_quote | grep id

which will output only the lines with that pattern, e.g.

id: 1550
id: 1551
id: 1552
id: 1553

19.7 Measuring publishing frequency with ros2 topic hz

There are situations in which we are interested in knowing if the topics are receiving messages at an expected rate,
without particular interest in the contents of the messages. We can do so with

ros2 topic hz /amazing_quote

which will output, after some time,

WARNING: topic [/amazing_quote] does not appear to be published yet
average rate: 2.000

min: 0.500s max: 0.500s std dev: 0.00007s window: 4
average rate: 2.000

min: 0.500s max: 0.500s std dev: 0.00013s window: 7
average rate: 2.000

min: 0.500s max: 0.500s std dev: 0.00011s window: 9

We must wait for a while until messages are received so that the tool can measure the frequency properly. You prob-
ably have noticed that the frequency measured by ros2 topic hz is compatible with the period of the Timer in our
publisher Node.

102 Chapter 19. Inspecting topics (ros2 topic)

ROS2 Tutorial, Release October 03, 2023

19.8 Stop the publisher

Now we have exhausted all relevant tools that can give us information related to the publisher. Let us close the publisher
with CTRL+C so that we can evaluate how these tools can help us analyze a subscriber.

19.9 Start the subscriber and get basic info

ros2 run python_package_that_uses_the_messages amazing_quote_subscriber_node

When only the subscriber is running, we can still get the basic info on the topic, e.g.

ros2 topic list

which also outputs

/amazing_quote
/parameter_events
/rosout

and

ros2 topic info /amazing_quote

which, differently from before, outputs

Type: package_with_interfaces/msg/AmazingQuote
Publisher count: 0
Subscription count: 1

19.10 Testing your subscribers with ros2 topic pub

To somewhat quickly evaluate a subscriber, we can use the ros2 topic pub. It allows us to publish messages to
check the behavior of our subscribers.

In our case, we can send an AmazingQuote using YAML (YAML Ain't Markup Language) (More info). You can also
refer to the YAML Cheat Sheet at QuickRef.ME.

ros2 topic pub /amazing_quote \
package_with_interfaces/msg/AmazingQuote \
'{
id: 1994,
quote: So you’re telling me there’s a chance,
philosopher_name: Lloyd
}'

Note: To improve readability, the command above uses the escape character \. You can see more on this at the bash
docs. You can also refer to the bash Cheat Sheet at QuickRef.ME.

which will result in our subscriber outputting

19.8. Stop the publisher 103

https://yaml.org/
https://quickref.me/yaml.html
https://www.gnu.org/software/bash/manual/bash.html#Escape-Character
https://www.gnu.org/software/bash/manual/bash.html#Escape-Character
https://quickref.me/bash.html

ROS2 Tutorial, Release October 03, 2023

[INFO] [1684222464.960446589] [amazing_quote_subscriber_node]:
I have received the most amazing of quotes.
It says

'So you’re telling me there’s a chance'

And was though by the following genius

-- Lloyd

This latest quote had the id=1994.

[INFO] [1684222465.953452826] [amazing_quote_subscriber_node]:
I have received the most amazing of quotes.
It says

'So you’re telling me there’s a chance'

And was though by the following genius

-- Lloyd

This latest quote had the id=1994.

For complicated messages, properly writing the message on the terminal can be a handful. In that case, it might be
better to make a minimal script to test the subscriber instead. Refer to Create the Node with a publisher.

104 Chapter 19. Inspecting topics (ros2 topic)

CHAPTER

TWENTY

AT YOUR SERVICE: SERVERS AND CLIENTS

Note: Except for the particulars of the setup.py file, the way that services in ROS2 work in Python, i.e. the expla-
nation in this section, does not depend on ament_python or ament_cmake.

In some cases, we need means of communication in which each command has an associated response. That is where
Services come into play.

20.1 Create the package

We start by creating a package to use the Service we first created in The service file.

cd ~/ros2_tutorial_workspace/src
ros2 pkg create python_package_that_uses_the_services \
--build-type ament_python \
--dependencies rclpy package_with_interfaces

20.2 Overview

Before we start exploring the elements of the package, let us

1. Create the Node with a Service Server.

2. Create the Node with a Service Client.

3. Update the setup.py so that ros2 run finds these programs.

20.3 Create the Node with a Service Server

TL;DR Creating a service server

1. Add new dependencies to package.xml

2. Import new services from <package_name>.srv import <srv_name>

3. In a subclass of Node

1. create a callback def callback(self, request, response):

105

ROS2 Tutorial, Release October 03, 2023

2. create a service server with self.service_server = self.create_service(...)

4. Add the new Node to setup.py

Let’s start by creating a what_is_the_point_service_server_node.py in ~/ros2_tutorial_workspace/
src/python_package_that_uses_the_services/python_package_that_uses_the_services with the fol-
lowing contents

what_is_the_point_service_server_node.py

import random
from textwrap import dedent # https://docs.python.org/3/library/textwrap.html#textwrap.
→˓dedent

import rclpy
from rclpy.node import Node
from package_with_interfaces.srv import WhatIsThePoint

class WhatIsThePointServiceServerNode(Node):
"""A ROS2 Node with a Service Server for WhatIsThePoint."""

def __init__(self):
super().__init__('what_is_the_point_service_server')

self.service_server = self.create_service(
srv_type=WhatIsThePoint,
srv_name='/what_is_the_point',
callback=self.what_is_the_point_service_callback)

self.service_server_call_count: int = 0

def what_is_the_point_service_callback(self,
request: WhatIsThePoint.Request,
response: WhatIsThePoint.Response
) -> WhatIsThePoint.Response:

"""Analyses an AmazingQuote and returns what is the point.
If the quote contains 'life', it returns a point whose sum of coordinates is␣

→˓42.
Otherwise, it returns a random point whose sum of coordinates is not 42.

"""

Generate the x,y,z of the point
if "life" in request.quote.quote.lower():

x: float = random.uniform(0, 42)
y: float = random.uniform(0, 42 - x)
z: float = 42 - (x + y)

else:
x: float = random.uniform(0, 100)
y: float = random.uniform(0, 100)
z: float = random.uniform(0, 100)
if x + y + z == 42: # So you’re telling me there’s a chance? Yes!

x = x + 1 # Not anymore :(

(continues on next page)

106 Chapter 20. At your Service: Servers and Clients

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

Assign to the response
response.point.x = x
response.point.y = y
response.point.z = z

Increase the call count
self.service_server_call_count = self.service_server_call_count + 1

self.get_logger().info(dedent(f"""
This is the call number {self.service_server_call_count} to this Service␣

→˓Server.
The analysis of the AmazingQuote below is complete.

{request.quote.quote}

-- {request.quote.philosopher_name}

The point has been sent back to the client.
"""))

return response

def main(args=None):
"""
The main function.
:param args: Not used directly by the user, but used by ROS2 to configure
certain aspects of the Node.
"""
try:

rclpy.init(args=args)

what_is_the_point_service_server_node = WhatIsThePointServiceServerNode()

rclpy.spin(what_is_the_point_service_server_node)
except KeyboardInterrupt:

pass
except Exception as e:

print(e)

if __name__ == '__main__':
main()

The code begins with an import to the service we created. No surprise here.

import random
from textwrap import dedent # https://docs.python.org/3/library/textwrap.html#textwrap.
→˓dedent

import rclpy
from rclpy.node import Node

(continues on next page)

20.3. Create the Node with a Service Server 107

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

from package_with_interfaces.srv import WhatIsThePoint

The Service Server must be initialised with the create_service(), as follows, with parameters that should by now
be quite obvious to us.

self.service_server = self.create_service(
srv_type=WhatIsThePoint,
srv_name='/what_is_the_point',
callback=self.what_is_the_point_service_callback)

The Service Server receives a WhatIsThePoint.Request and returns a WhatIsThePoint.Response.

def what_is_the_point_service_callback(self,
request: WhatIsThePoint.Request,
response: WhatIsThePoint.Response
) -> WhatIsThePoint.Response:

"""Analyses an AmazingQuote and returns what is the point.
If the quote contains 'life', it returns a point whose sum of coordinates is␣

→˓42.
Otherwise, it returns a random point whose sum of coordinates is not 42.

"""

Warning: The API for the Service Server callback is a bit weird in that needs the Response as an argument. This
API might change, but for now this is what we got.

We play around with the WhatIsThePoint.Request a bit and use that result to populate a WhatIsThePoint.
Response, as follows

Assign to the response
response.point.x = x
response.point.y = y
response.point.z = z

At the end of the callback, we must return that WhatIsThePoint.Request, like so

return response

The Service Server was quite painless, but it doesn’t do much. The Service Client might be a bit more on the painful
side for the uninitiated.

20.4 Service Clients

ROS2 rclpy Service Clients are implemented using an asyncio logic (More info). In this tutorial, we briefly intro-
duce unavoidable async concepts in Python’s asyncio, but for any extra understanding, it’s better to check the official
documentation.

108 Chapter 20. At your Service: Servers and Clients

https://github.com/ros2/rclpy/issues/464
https://docs.python.org/3.10/library/asyncio.html

ROS2 Tutorial, Release October 03, 2023

20.5 Create the Node with a Service Client (using a callback)

TL;DR Creating a Service Client (using a callback)

1. Add new dependencies to package.xml

2. Import new services from <package_name>.srv import <srv_name>

3. In a subclass of Node

1. (recommended) wait for service to be available service_client.wait_for_service(...).

2. (if periodic) add a Timer with a proper timer_callback()

3. create a callback for the future def service_future_callback(self, future: Future):

4. create a Service Client with self.service_client = self.create_client(...)

4. Add the new Node to setup.py

20.5.1 The Node

Note: This example deviates somewhat from what is done in the official examples. This implementation shown herein
uses a callback and rclpy.spin(). It has many practical applications, but it’s no panacea.

We start by adding a what_is_the_point_service_client_node.py at python_package_that_uses_the_services/
python_package_that_uses_the_services with the following contents.

what_is_the_point_service_client_node.py

1 import random
2 from textwrap import dedent # https://docs.python.org/3/library/textwrap.html#textwrap.

→˓dedent
3

4 import rclpy
5 from rclpy.task import Future
6 from rclpy.node import Node
7

8 from package_with_interfaces.srv import WhatIsThePoint
9

10

11 class WhatIsThePointServiceClientNode(Node):
12 """A ROS2 Node with a Service Client for WhatIsThePoint."""
13

14 def __init__(self):
15 super().__init__('what_is_the_point_service_client')
16

17 self.service_client = self.create_client(
18 srv_type=WhatIsThePoint,
19 srv_name='/what_is_the_point')
20

21 while not self.service_client.wait_for_service(timeout_sec=1.0):
22 self.get_logger().info(f'service {self.service_client.srv_name} not␣

(continues on next page)

20.5. Create the Node with a Service Client (using a callback) 109

https://github.com/ros2/examples/tree/humble/rclpy/services/minimal_client/examples_rclpy_minimal_client

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

→˓available, waiting...')
23

24 self.future: Future = None
25

26 timer_period: float = 0.5
27 self.timer = self.create_timer(
28 timer_period_sec=timer_period,
29 callback=self.timer_callback)
30

31 def timer_callback(self):
32 """Method that is periodically called by the timer."""
33

34 request = WhatIsThePoint.Request()
35 if random.uniform(0, 1) < 0.5:
36 request.quote.quote = "I wonder about the Ultimate Question of Life, the␣

→˓Universe, and Everything."
37 request.quote.philosopher_name = "Creators of Deep Thought"
38 request.quote.id = 1979
39 else:
40 request.quote.quote = """[...] your living... it is always potatoes. I dream␣

→˓of potatoes."""
41 request.quote.philosopher_name = "a young Maltese potato farmer"
42 request.quote.id = 2013
43

44 if self.future is not None and not self.future.done():
45 self.future.cancel() # Cancel the future. The callback will be called with␣

→˓Future.result == None.
46 self.get_logger().info("Service Future canceled. The Node took too long to␣

→˓process the service call."
47 "Is the Service Server still alive?")
48 self.future = self.service_client.call_async(request)
49 self.future.add_done_callback(self.process_response)
50

51 def process_response(self, future: Future):
52 """Callback for the future, that will be called when it is done"""
53 response = future.result()
54 if response is not None:
55 self.get_logger().info(dedent(f"""
56 We have thus received the point of our quote.
57

58 {(response.point.x, response.point.y, response.point.z)}
59 """))
60 else:
61 self.get_logger().info(dedent("""
62 The response was None. :(
63 """))
64

65

66 def main(args=None):
67 """
68 The main function.
69 :param args: Not used directly by the user, but used by ROS2 to configure

(continues on next page)

110 Chapter 20. At your Service: Servers and Clients

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

70 certain aspects of the Node.
71 """
72 try:
73 rclpy.init(args=args)
74

75 what_is_the_point_service_client_node = WhatIsThePointServiceClientNode()
76

77 rclpy.spin(what_is_the_point_service_client_node)
78 except KeyboardInterrupt:
79 pass
80 except Exception as e:
81 print(e)
82

83

84 if __name__ == '__main__':
85 main()

20.5.2 Imports

To have access to the service, we import it with from <package>.srv import <Service>.

from package_with_interfaces.srv import WhatIsThePoint

20.5.3 Instantiate a Service Client

We instantiate a Service Client with Node.create_client(). The values of srv_type and srv_name must match
the ones used in the Service Server.

self.service_client = self.create_client(
srv_type=WhatIsThePoint,
srv_name='/what_is_the_point')

20.5.4 (Recommended) Wait for the Service Server to be available

Warning: The order of execution and speed of Nodes depend on a complicated web of relationships between
ROS2, the operating system, and the workload of the machine. It would be naive to expect the server to always be
active before the client, even if the server Node is started before the client Node.

In many cases, having the result of the service is of particular importance (hence the use of a service and not messages).
In that case, we have to wait until service_client.wait_for_service(), as shown below.

while not self.service_client.wait_for_service(timeout_sec=1.0):
self.get_logger().info(f'service {self.service_client.srv_name} not␣

→˓available, waiting...')

20.5. Create the Node with a Service Client (using a callback) 111

ROS2 Tutorial, Release October 03, 2023

20.5.5 Instantiate a Future as a class attribute

As part of the async framework, we instantiate a Future (More info). In this example it is important to have it as an
attribute of the class so that we do not lose the reference to it after the callback.

self.future: Future = None

20.5.6 Instantiate a Timer

Whenever periodic work must be done, it is recommended to use a Timer, as we already learned in Use a Timer for
periodic work (when using rclpy.spin()).

timer_period: float = 0.5
self.timer = self.create_timer(

timer_period_sec=timer_period,
callback=self.timer_callback)

The need for a callback for the Timer, should also be no surprise.

def timer_callback(self):
"""Method that is periodically called by the timer."""

20.5.7 Service Clients use <srv>.Request()

Given that services work in a request-response model, the Service Client must instantiate a suitable <srv>.Request()
and populate its fields before making the service call, as shown below. To make the example more interesting, it
randomly switches between two possible quotes.

request = WhatIsThePoint.Request()
if random.uniform(0, 1) < 0.5:

request.quote.quote = "I wonder about the Ultimate Question of Life, the␣
→˓Universe, and Everything."

request.quote.philosopher_name = "Creators of Deep Thought"
request.quote.id = 1979

else:
request.quote.quote = """[...] your living... it is always potatoes. I dream␣

→˓of potatoes."""
request.quote.philosopher_name = "a young Maltese potato farmer"
request.quote.id = 2013

20.5.8 Make service calls with call_async()

The async framework in ROS2 is based on Python’s asyncio that we already saw in Python’s asyncio.

Note: At first glance, it might feel that all this trouble to use async is unjustified. However, Nodes in practice will
hardly ever do one service call and be done. Many Nodes in a complex system will have a composition of many service
servers, service clients, publishers, and subscribers. Blocking the entire Node while it waits for the result of a service
is, in most cases, a bad design.

112 Chapter 20. At your Service: Servers and Clients

https://docs.python.org/3.10/library/asyncio-future.html#asyncio-futures

ROS2 Tutorial, Release October 03, 2023

The recommended way to call a service is through call_async(), which is the reason why we are working with async
logic. In general, the result of call_async(), a Future, will not have the result of the service call at the next line of
our program.

There are many ways to address the use of a Future. One of them, specially tailored to interface async with
callback-based frameworks is the Future.add_done_callback(). If the Future is already done by the time we
call add_done_callback(), it is supposed to call the callback for us.

The benefit of this is that the callback will not block our resources until the response is ready. When the response is
ready, and the ROS2 executor gets to processing Future callbacks, our callback will be called automagically.

if self.future is not None and not self.future.done():
self.future.cancel() # Cancel the future. The callback will be called with␣

→˓Future.result == None.
self.get_logger().info("Service Future canceled. The Node took too long to␣

→˓process the service call."
"Is the Service Server still alive?")

self.future = self.service_client.call_async(request)
self.future.add_done_callback(self.process_response)

Given that we are periodically calling the service, before replace the class Future with the next service call, we can
check if the service call was done with Future.done(). If it is not done, we can use Future.cancel() so that our
callback can handle this case as well. For instance, if the Service Server has been shutdown, the Future would never
be done.

if self.future is not None and not self.future.done():
self.future.cancel() # Cancel the future. The callback will be called with␣

→˓Future.result == None.
self.get_logger().info("Service Future canceled. The Node took too long to␣

→˓process the service call."
"Is the Service Server still alive?")

self.future = self.service_client.call_async(request)
self.future.add_done_callback(self.process_response)

20.5.9 The Future callback

The callback for the Future must receive a Future as an argument. Having it as an attribute of the Node’s class allows
us to access ROS2 method such as get_logger() and other contextual information.

The result of the Future is obtained using Future.result(). The response might be None in some cases, so we
must check it before trying to use the result, otherwise we will get a nasty exception.

def process_response(self, future: Future):
"""Callback for the future, that will be called when it is done"""
response = future.result()
if response is not None:

self.get_logger().info(dedent(f"""
We have thus received the point of our quote.

{(response.point.x, response.point.y, response.point.z)}
"""))

else:
self.get_logger().info(dedent("""

The response was None. :(
(continues on next page)

20.5. Create the Node with a Service Client (using a callback) 113

https://github.com/ros2/rclpy/blob/0f1af0db16c38899aaea1fb1ca696800255d2b55/rclpy/rclpy/task.py#L163

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

"""))

20.6 Update the setup.py

As we already learned in Making ros2 run work, we must adjust the setup.py to refer to the Nodes we just created.

setup.py

1 from setuptools import setup
2

3 package_name = 'python_package_that_uses_the_services'
4

5 setup(
6 name=package_name,
7 version='0.0.0',
8 packages=[package_name],
9 data_files=[

10 ('share/ament_index/resource_index/packages',
11 ['resource/' + package_name]),
12 ('share/' + package_name, ['package.xml']),
13],
14 install_requires=['setuptools'],
15 zip_safe=True,
16 maintainer='murilo',
17 maintainer_email='murilomarinho@ieee.org',
18 description='TODO: Package description',
19 license='TODO: License declaration',
20 tests_require=['pytest'],
21 entry_points={
22 'console_scripts': [
23 'what_is_the_point_service_client_node = '
24 'python_package_that_uses_the_services.what_is_the_point_service_client_

→˓node:main',
25 'what_is_the_point_service_server_node = '
26 'python_package_that_uses_the_services.what_is_the_point_service_server_

→˓node:main'
27],
28 },
29)

114 Chapter 20. At your Service: Servers and Clients

ROS2 Tutorial, Release October 03, 2023

20.7 Build and source

Before we proceed, let us build and source once.

cd ~/ros2_tutorial_workspace
colcon build
source install/setup.bash

Note: If you don’t remember why we’re building with these commands, see Always source after you build.

20.8 Testing Service Server and Client

ros2 run python_package_that_uses_the_services what_is_the_point_service_client_node

when running the client Node, the server is still not active. In that case, the client node will keep waiting for it, as
follows

[INFO] [1684293008.888276849] [what_is_the_point_service_client]: service /what_is_the_
→˓point not available, waiting...
[INFO] [1684293009.890589539] [what_is_the_point_service_client]: service /what_is_the_
→˓point not available, waiting...
[INFO] [1684293010.892778194] [what_is_the_point_service_client]: service /what_is_the_
→˓point not available, waiting...

In another terminal, we run the python_package_uses_the_service_node, as follows

ros2 run python_package_that_uses_the_services what_is_the_point_service_server_node

The server Node will then output, periodically,

[INFO] [1684485151.608507798] [what_is_the_point_service_server]:
This is the call number 1 to this Service Server.
The analysis of the AmazingQuote below is complete.

[...] your living... it is always potatoes. I dream of potatoes.

-- a young Maltese potato farmer

The point has been sent back to the client.

[INFO] [1684485152.092508332] [what_is_the_point_service_server]:
This is the call number 2 to this Service Server.
The analysis of the AmazingQuote below is complete.

I wonder about the Ultimate Question of Life, the Universe, and Everything.

-- Creators of Deep Thought

The point has been sent back to the client.
(continues on next page)

20.7. Build and source 115

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

[INFO] [1684485152.592516148] [what_is_the_point_service_server]:
This is the call number 3 to this Service Server.
The analysis of the AmazingQuote below is complete.

I wonder about the Ultimate Question of Life, the Universe, and Everything.

-- Creators of Deep Thought

The point has been sent back to the client.

and the client Node will output, periodically,

[INFO] [1684485151.609611689] [what_is_the_point_service_client]:
We have thus received the point of our quote.

(18.199457100225292, 33.14595477433704, 52.65262570058381)

[INFO] [1684485152.093228181] [what_is_the_point_service_client]:
We have thus received the point of our quote.

(11.17170193214362, 9.384897014549527, 21.443401053306854)

[INFO] [1684485152.593294259] [what_is_the_point_service_client]:
We have thus received the point of our quote.

(16.58535176162403, 0.6180505400411676, 24.796597698334804)

116 Chapter 20. At your Service: Servers and Clients

CHAPTER

TWENTYONE

INSPECTING SERVICES (ROS2 SERVICE)

ROS2 has a tool to help us inspect services. It is just as helpful as the tools for topics.

ros2 service -h

which outputs the detailed information of the tool, as shown below. In particular, the highlighted fields are used quite
frequently in practice.

usage: ros2 service [-h] [--include-hidden-services]
Call `ros2 service <command> -h` for more
detailed usage. ...

Various service related sub-commands

options:
-h, --help show this help message and exit
--include-hidden-services

Consider hidden services as well

Commands:
call Call a service
find Output a list of available services of a given type
list Output a list of available services
type Output a service's type

Call `ros2 service <command> -h` for more detailed usage.

21.1 Start a service server

Similar to the discussion about topics, it is good to be able to test service servers without having to develop a complete
service client. Let’s start by running the service server we created just now.

Warning: Be sure to terminate the Nodes we used in the past section before proceeding (e.g. with CTRL+C),
otherwise, the output will look different from what is described here.

ros2 run python_package_that_uses_the_services what_is_the_point_service_server_node

117

ROS2 Tutorial, Release October 03, 2023

21.2 Getting all services with ros2 service list

To see all currently active services, we run

ros2 service list

which, in this case, outputs

/what_is_the_point
/what_is_the_point_service_server/describe_parameters
/what_is_the_point_service_server/get_parameter_types
/what_is_the_point_service_server/get_parameters
/what_is_the_point_service_server/list_parameters
/what_is_the_point_service_server/set_parameters
/what_is_the_point_service_server/set_parameters_atomically

To everyone’s surprise, there are a lot of services beyond the one we created. We can address those when we talk about
ROS2 parameters, for now, we ignore them.

21.3 Testing your service servers with ros2 service call

Like the discussion about topics, ROS2 has a tool to call a service from the terminal, called ros2 service call.
The service must be specified and an instance of its request must be written using YAML. Back to our example, we
can do

ros2 service call /what_is_the_point \
package_with_interfaces/srv/WhatIsThePoint \
'{
quote: {

id: 1994,
quote: So you’re telling me there’s a chance,
philosopher_name: Lloyd
}

}'

which results in

waiting for service to become available...
requester: making request: package_with_interfaces.srv.WhatIsThePoint_
→˓Request(quote=package_with_interfaces.msg.AmazingQuote(id=1994, quote='So you’re␣
→˓telling me there’s a chance', philosopher_name='Lloyd'))

response:
package_with_interfaces.srv.WhatIsThePoint_Response(point=geometry_msgs.msg.Point(x=8.
→˓327048266159165, y=95.97987946924988, z=67.03878311627777))

118 Chapter 21. Inspecting services (ros2 service)

ROS2 Tutorial, Release October 03, 2023

21.4 Testing your service clients???

To the best of my knowledge, there is no tool inside ros2 service to allow us to experiment with the service clients.
For service clients, apparently, the only way to test them is to make a minimal service server to interact with them.
We’ve already done that, so this topic ends here.

Warning: This topic is under heavy construction. Don’t forget your PPE (Personal Protective Equipment) if you’re
venturing forward.

21.4. Testing your service clients??? 119

ROS2 Tutorial, Release October 03, 2023

120 Chapter 21. Inspecting services (ros2 service)

CHAPTER

TWENTYTWO

PARAMETERS: CREATING CONFIGURABLE NODES

The Nodes we have made in the past few sections are interesting because they take advantage of the interprocess
communication provided by ROS2.

Other capabilities of ROS2 that we must take advantage of are ROS2 parameters and ROS2 launch files. We can use
them to modify the behavior of Nodes without having to modify their source code.

For Python users, that might sound less appealing than for users of compiled languages. However, users of your package
might not want nor be able to modify the source code directly, if the package is installable or part of a larger system
with multiple users.

22.1 Create the package

First, let us create an ament_python package that depends on our packages_with_interfaces and build from
there.

cd ~/ros2_tutorial_workspace/src
ros2 pkg create python_package_that_uses_parameters_and_launch_files \
--build-type ament_python \
--dependencies rclpy package_with_interfaces

22.2 Overview

Before we start exploring the elements of the package, let us

1. Create the Node with a configurable publisher using parameters, mostly as we saw in Create the Node with a
publisher.

2. Create a launch file to configure the Node without modifying its source code.

121

https://docs.ros.org/en/humble/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Parameters/Understanding-ROS2-Parameters.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/Launch/Launch-Main.html

ROS2 Tutorial, Release October 03, 2023

22.3 Create the Node using parameters

TL;DR Using parameters in a Node

1. Declare the parameter with Node.declare_parameter(), usually in the class’s __init__.

2. Get the parameter with Node.get_parameter() either once or continuously.

In this step, we’ll work on this.

src/python_package_that_uses_parameters_and_launch_files
python_package_that_uses_parameters_and_launch_files/

__init__.py
amazing_quote_configurable_publisher_node.py

For the sake of the example, let us suppose that we want to make an AmazingQuote publisher that is, now, configurable.

Let’s start by creating an amazing_quote_configurable_publisher_node.py in
python_package_that_uses_parameters_and_launch_files/python_package_that_uses_parameters_and_launch_files
with the following contents

amazing_quote_configurable_publisher_node.py

1 import rclpy
2 from rclpy.node import Node
3 from package_with_interfaces.msg import AmazingQuote
4

5

6 class AmazingQuoteConfigurablePublisherNode(Node):
7 """A configurable ROS2 Node that publishes a configurable amazing quote."""
8

9 def __init__(self):
10 super().__init__('amazing_quote_configurable_publisher_node')
11

12 # Periodically-obtained parameters
13 self.declare_parameter('quote', 'Use the force, Pikachu!')
14 self.declare_parameter('philosopher_name', 'Uncle Ben')
15

16 # One-off parameters
17 self.declare_parameter('topic_name', 'amazing_quote')
18 topic_name: str = self.get_parameter('topic_name').get_parameter_value().string_

→˓value
19 self.declare_parameter('period', 0.5)
20 timer_period: float = self.get_parameter('period').get_parameter_value().double_

→˓value
21

22 self.configurable_amazing_quote_publisher = self.create_publisher(
23 msg_type=AmazingQuote,
24 topic=topic_name,
25 qos_profile=1)
26

27 self.timer = self.create_timer(timer_period, self.timer_callback)
(continues on next page)

122 Chapter 22. Parameters: creating configurable Nodes

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

28

29 self.incremental_id: int = 0
30

31 def timer_callback(self):
32 """Method that is periodically called by the timer."""
33

34 quote: str = self.get_parameter('quote').get_parameter_value().string_value
35 philosopher_name: str = self.get_parameter('philosopher_name').get_parameter_

→˓value().string_value
36

37 amazing_quote = AmazingQuote()
38 amazing_quote.id = self.incremental_id
39 amazing_quote.quote = quote
40 amazing_quote.philosopher_name = philosopher_name
41

42 self.configurable_amazing_quote_publisher.publish(amazing_quote)
43

44 self.incremental_id = self.incremental_id + 1
45

46

47 def main(args=None):
48 """
49 The main function.
50 :param args: Not used directly by the user, but used by ROS2 to configure
51 certain aspects of the Node.
52 """
53 try:
54 rclpy.init(args=args)
55

56 amazing_quote_configurable_publisher_node =␣
→˓AmazingQuoteConfigurablePublisherNode()

57

58 rclpy.spin(amazing_quote_configurable_publisher_node)
59 except KeyboardInterrupt:
60 pass
61 except Exception as e:
62 print(e)
63

64

65 if __name__ == '__main__':
66 main()

22.3. Create the Node using parameters 123

ROS2 Tutorial, Release October 03, 2023

22.4 Don’t forget to declare the parameter!

Note: According to the official documentation, it is possible to work with undeclared parameters, but I recommend
against for basic usage.

It’s easy to forget it, but Node.get_parameter() will not work if the parameter was not first declared with Node.
declare_parameter(). Don’t forget it!

22.5 One-off parameters

For one-off parameters, we just get them once after declaring them. Because we’re using those attributes directly in the
__init__ method, they are not made attributes of the class, but they could be.

One-off parameters
self.declare_parameter('topic_name', 'amazing_quote')
topic_name: str = self.get_parameter('topic_name').get_parameter_value().string_

→˓value
self.declare_parameter('period', 0.5)
timer_period: float = self.get_parameter('period').get_parameter_value().double_

→˓value

self.configurable_amazing_quote_publisher = self.create_publisher(
msg_type=AmazingQuote,
topic=topic_name,
qos_profile=1)

self.timer = self.create_timer(timer_period, self.timer_callback)

In this case, we’re making the topic name and publication periodicity as one-off configurable parameters.

22.6 Continuously-obtained parameters

Note: According to the official documentation, it is possible to assign callbacks to manage changes in parameters. It
is not the best-documented feature and has some caveats, so we will skip that for now.

For parameters that we obtain continuously through the lifetime of the Node, we can, for example, declare them in the
__init__ method, like so

Periodically-obtained parameters
self.declare_parameter('quote', 'Use the force, Pikachu!')
self.declare_parameter('philosopher_name', 'Uncle Ben')

then obtain them in another method, like so

def timer_callback(self):
"""Method that is periodically called by the timer."""

(continues on next page)

124 Chapter 22. Parameters: creating configurable Nodes

https://docs.ros.org/en/humble/Concepts/Basic/About-Parameters.html
https://docs.ros.org/en/humble/Concepts/Basic/About-Parameters.html

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

quote: str = self.get_parameter('quote').get_parameter_value().string_value
philosopher_name: str = self.get_parameter('philosopher_name').get_parameter_

→˓value().string_value

amazing_quote = AmazingQuote()
amazing_quote.id = self.incremental_id
amazing_quote.quote = quote
amazing_quote.philosopher_name = philosopher_name

self.configurable_amazing_quote_publisher.publish(amazing_quote)

self.incremental_id = self.incremental_id + 1

In this example, we are making the quote and the philosopher_name as configurable parameters that can be changed
continuously, during the lifetime of the Node. After they are changed, the node will publish a message with different
contents.

22.7 Truly configurable: using _launch.py files

TL;DR Using launch files

1. (Once) Create a launch folder in the project.

2. Create the launch file named as launch/<something>_launch.py.

3. (Once) modify the setup.py to correctly install launch files.

Differently from ROS1, in ROS2 we can use Python launch files. They are quite powerful, well documented, and
mentioned first in the official documentation, so we will use them instead of XML or YAML files.

22.8 (Once) create the launch folder

In this step, we’ll work on this.

src/python_package_that_uses_parameters_and_launch_files
python_package_that_uses_parameters_and_launch_files/

__init__.py
amazing_quote_configurable_publisher_node.py

launch

Well, without further ado

cd ~/ros2_tutorial_workspace/src/python_package_that_uses_parameters_and_launch_files
mkdir launch

22.7. Truly configurable: using _launch.py files 125

https://docs.ros.org/en/humble/Tutorials/Intermediate/Launch/Creating-Launch-Files.html

ROS2 Tutorial, Release October 03, 2023

22.9 Create the launch file

In this step, we’ll work on this.

src/python_package_that_uses_parameters_and_launch_files
python_package_that_uses_parameters_and_launch_files/

__init__.py
amazing_quote_configurable_publisher_node.py

launch
peanut_butter_falcon_quote_publisher_launch.py

Suppose that we are tired of all the meme quotes and want to make our Node publish a truly inspirational quote. We
start by making the launch file named peanut_butter_falcon_quote_publisher_launch.py within the launch
folder we just created, with the following contents

peanut_butter_falcon_quote_publisher_launch.py

1 from launch import LaunchDescription
2 from launch_ros.actions import Node
3

4

5 def generate_launch_description():
6 return LaunchDescription([
7 Node(
8 package='python_package_that_uses_parameters_and_launch_files',
9 executable='amazing_quote_configurable_publisher_node',

10 name='peanut_butter_falcon_quote_publisher_node',
11 parameters=[{
12 "topic_name": "truly_inspirational_quote",
13 "period": 0.25,
14 "quote": "Yeah, you're gonna die, it's a matter of time. That ain't the␣

→˓question. The question's, "
15 "whether they're gonna have a good story to tell about you when␣

→˓you're gone",
16 "philosopher_name": "Tyler",
17 }]
18)
19])

We’re relying on the LaunchDescription, which expects a list of launch_ros.actions.

from launch import LaunchDescription
from launch_ros.actions import Node

When using a launch_ros.actions.Node, we need to define which package it belongs to and the executable
which must match the name we set for the executable in the setup.py

package='python_package_that_uses_parameters_and_launch_files',
executable='amazing_quote_configurable_publisher_node',

Besides the parameters, we can configure the name of the Node, such that each is unique

126 Chapter 22. Parameters: creating configurable Nodes

ROS2 Tutorial, Release October 03, 2023

name='peanut_butter_falcon_quote_publisher_node',

Finally, our parameters are defined using a dictionary within a list, namely

"topic_name": "truly_inspirational_quote",
"period": 0.25,
"quote": "Yeah, you're gonna die, it's a matter of time. That ain't the␣

→˓question. The question's, "
"whether they're gonna have a good story to tell about you when␣

→˓you're gone",
"philosopher_name": "Tyler",

22.10 The setup.py

In this step, we’ll work on this.

src/python_package_that_uses_parameters_and_launch_files
python_package_that_uses_parameters_and_launch_files/

__init__.py
amazing_quote_configurable_publisher_node.py

launch
peanut_butter_falcon_quote_publisher_launch.py

setup.py

Modify the setup.py to look like this

setup.py

1 import os
2 from glob import glob
3 from setuptools import setup
4

5 package_name = 'python_package_that_uses_parameters_and_launch_files'
6

7 setup(
8 name=package_name,
9 version='0.0.0',

10 packages=[package_name],
11 data_files=[
12 ('share/ament_index/resource_index/packages',
13 ['resource/' + package_name]),
14 ('share/' + package_name, ['package.xml']),
15 (os.path.join('share', package_name, 'launch'), glob(os.path.join('launch',

→˓'*launch.[pxy][yma]*'))),
16],
17 install_requires=['setuptools'],
18 zip_safe=True,
19 maintainer='murilo',
20 maintainer_email='murilomarinho@ieee.org',
21 description='TODO: Package description',

(continues on next page)

22.10. The setup.py 127

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

22 license='TODO: License declaration',
23 tests_require=['pytest'],
24 entry_points={
25 'console_scripts': [
26 'amazing_quote_configurable_publisher_node = '
27 'python_package_that_uses_parameters_and_launch_files.amazing_quote_

→˓configurable_publisher_node:main',
28],
29 },
30)

We have already seen a setup.py so many times we’re almost calling it Wilson. The only difference is emphasized
above inside the data_files, which is the line that will specify that launch files will be installed as well. Notice that
the setup.py looks for files with a specific pattern in the folder launch, so be sure that your launch files have the
correct name otherwise they might not be installed as expected.

22.11 Build and source

Before we proceed, let us build and source once.

cd ~/ros2_tutorial_workspace
colcon build
source install/setup.bash

Note: If you don’t remember why we’re building with these commands, see Always source after you build.

Warning: This topic is under heavy construction. Don’t forget your PPE if you’re venturing forward.

128 Chapter 22. Parameters: creating configurable Nodes

https://www.imdb.com/name/nm1012434/

CHAPTER

TWENTYTHREE

LAUNCH CONFIGURABLE NODES (ROS2 LAUNCH)

ROS2 has a tool to interact with launch files called ros2 launch.

We can obtain more information on it with

ros2 launch -h

which returns

usage: ros2 launch [-h] [-n] [-d] [-p | -s] [-a]
[--launch-prefix LAUNCH_PREFIX]
[--launch-prefix-filter LAUNCH_PREFIX_FILTER]
package_name [launch_file_name] [launch_arguments ...]

Run a launch file

positional arguments:
package_name Name of the ROS package which contains the launch

file
launch_file_name Name of the launch file
launch_arguments Arguments to the launch file; '<name>:=<value>' (for

duplicates, last one wins)

options:
-h, --help show this help message and exit
-n, --noninteractive Run the launch system non-interactively, with no

terminal associated
-d, --debug Put the launch system in debug mode, provides more

verbose output.
-p, --print, --print-description

Print the launch description to the console without
launching it.

-s, --show-args, --show-arguments
Show arguments that may be given to the launch file.

-a, --show-all-subprocesses-output
Show all launched subprocesses' output by overriding
their output configuration using the
OVERRIDE_LAUNCH_PROCESS_OUTPUT envvar.

--launch-prefix LAUNCH_PREFIX
Prefix command, which should go before all
executables. Command must be wrapped in quotes if it
contains spaces (e.g. --launch-prefix 'xterm -e gdb

(continues on next page)

129

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

-ex run --args').
--launch-prefix-filter LAUNCH_PREFIX_FILTER

Regex pattern for filtering which executables the
--launch-prefix is applied to by matching the
executable name.

Despite the large number of possible options, there are no notable examples of options that are of particular use to us
right now.

We can call our Node, configured with our launch file, with

ros2 launch python_package_that_uses_parameters_and_launch_files peanut_butter_falcon_
→˓quote_publisher_launch.py

which returns

[INFO] [launch]: All log files can be found below /home/murilo/.ros/log/2023-06-30-17-00-
→˓07-522194-murilos-toaster-2963
[INFO] [launch]: Default logging verbosity is set to INFO
[INFO] [amazing_quote_configurable_publisher_node-1]: process started with pid [2964]

showing that the launch was successful.

IN ANOTHER TERMINAL we run

ros2 topic echo /truly_inspirational_quote

resulting in something similar to

id: 301
quote: Yeah, you're gonna die, it's a matter of time. That ain't the question. The␣
→˓question's, whether they're gonna have a good story ...
philosopher_name: Tyler

id: 302
quote: Yeah, you're gonna die, it's a matter of time. That ain't the question. The␣
→˓question's, whether they're gonna have a good story ...
philosopher_name: Tyler

id: 303
quote: Yeah, you're gonna die, it's a matter of time. That ain't the question. The␣
→˓question's, whether they're gonna have a good story ...
philosopher_name: Tyler

And there you have it. Feeling inspired yet?

Warning: This topic is under heavy construction. Don’t forget your PPE if you’re venturing forward.

130 Chapter 23. Launch configurable Nodes (ros2 launch)

CHAPTER

TWENTYFOUR

INSPECTING PARAMETERS (ROS2 PARAM)

ROS2 has a tool to interact with launch files called ros2 param.

We can obtain more information on it with

ros2 param -h

which returns

usage: ros2 param [-h] Call `ros2 param <command> -h` for more detailed usage. ...

Various param related sub-commands

options:
-h, --help show this help message and exit

Commands:
delete Delete parameter
describe Show descriptive information about declared parameters
dump Dump the parameters of a node to a yaml file
get Get parameter
list Output a list of available parameters
load Load parameter file for a node
set Set parameter

Call `ros2 param <command> -h` for more detailed usage.

Note: By the time you try this out, the documentation of ros2 param dump might have changed. See
ros2/ros2cli/#835.

As shown in the emphasized lines above, the ros2 param tool has a large number of useful commands to interact with
parameters.

131

https://github.com/ros2/ros2cli/issues/836

ROS2 Tutorial, Release October 03, 2023

24.1 Launching the Node with parameters

Hint: If you left the Node running from the last section, just keep it that way and skip this.

ros2 launch \
python_package_that_uses_parameters_and_launch_files \
peanut_butter_falcon_quote_publisher_launch.py

24.2 List-up parameters with ros2 param list

Hint: Remember that grep is your new best friend.

Similar to other ROS2 commands, we can get a list of currently loaded parameters with

ros2 param list

which returns a well organized list showing the parameters of each active Node

/peanut_butter_falcon_quote_publisher_node:
period
philosopher_name
quote
topic_name
use_sim_time

24.3 Obtain parameters with ros2 param get

To obtain the value of a parameter, we can do as follows

ros2 param get \
/peanut_butter_falcon_quote_publisher_node \
quote

which will return the current value of the parameter, in this case, the initial value we set in the launch file

String value is: Yeah, you're gonna die, it's a matter of time. That ain't the question.␣
→˓The question's, whether they're gonna have a good story to tell about you when you're␣
→˓gone

132 Chapter 24. Inspecting parameters (ros2 param)

ROS2 Tutorial, Release October 03, 2023

24.4 Let’s check the output of the Node

Hint: If you left ros2 topic echo running from the last section, just keep it that way and skip this.

Before the next step, as we did in the past section, we do, IN ANOTHER TERMINAL WINDOW

ros2 topic echo /truly_inspirational_quote

24.5 Assign values to parameters with ros2 param set

For testing and regular usage, setting parameters from the command line is extremely helpful. Similar to how we are
able to publish messages to topics using a ROS2 tool, we can set a parameter with the following syntax

ros2 param set \
/peanut_butter_falcon_quote_publisher_node \
quote \
"You got a good-guy heart. You can't do shit about it, that's just who you are. You're a␣
→˓hero."

If everything is correct, we’ll get

Set parameter successful

Changing parameters is not instantaneous and, after the change becomes visible in the Node, our Node might have to
loop once before it updates itself. We will be able to see that change as follows in the terminal window running ros2
topic echo

id: 2220
quote: Yeah, you're gonna die, it's a matter of time. That ain't the question. The␣
→˓question's, whether they're gonna have a good story ...
philosopher_name: Tyler

id: 2221
quote: You got a good-guy heart. You can't do shit about it, that's just who you are. You
→˓'re a hero.
philosopher_name: Tyler

id: 2222
quote: You got a good-guy heart. You can't do shit about it, that's just who you are. You
→˓'re a hero.
philosopher_name: Tyler

id: 2223
quote: You got a good-guy heart. You can't do shit about it, that's just who you are. You
→˓'re a hero.
philosopher_name: Tyler

id: 2224
quote: You got a good-guy heart. You can't do shit about it, that's just who you are. You

(continues on next page)

24.4. Let’s check the output of the Node 133

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

→˓'re a hero.
philosopher_name: Tyler

24.6 Save parameters to a file with ros2 param dump

Warning: At the time I was writing this part of the tutorial, the description of ros2 param dump was outdated.
By the time you try this out, it might have been corrected. See ros2/ros2cli/#836 for more info.

Words are sometimes little happy accidents. This usage of the word dump has no relation whatsoever to, for example,
Peter got dumped by Sarah and went to Hawaii. Dump files are usually related to crashes and unresponsive programs,
so this name puzzles me since ROS: the first.

While we wait for someone to come and correct me on my claims above, just think about this as a weird name for
ros2 param print_to_screen_as_yaml. It prints the parameters in the terminal with a YAML file format. It is
nice because it gives a bit more info than ros2 param list, but not so useful as-is. The trick is that we can put all
that nicely formatted content into a file with

cd ~/ros2_tutorial_workspace/src
ros2 param dump \
/peanut_butter_falcon_quote_publisher_node \
> peanut_butter_falcon_quote_publisher_node.yaml

where we are using the > (see bash redirections) to overwrite the contents of the
peanut_butter_falcon_quote_publisher_node.yaml file with the output of ros2 param dump, so be
careful not to overwrite your precious files by mistake.

We can inspect the contents of the file with

cat peanut_butter_falcon_quote_publisher_node.yaml

which outputs

/peanut_butter_falcon_quote_publisher_node:
ros__parameters:
period: 0.25
philosopher_name: Tyler
quote: Yeah, you're gonna die, it's a matter of time. That ain't the question.
The question's, whether they're gonna have a good story to tell about you when
you're gone

topic_name: truly_inspirational_quote
use_sim_time: false

134 Chapter 24. Inspecting parameters (ros2 param)

https://github.com/ros2/ros2cli/blob/86ae3930d4b56171ddff6d12cd467f6570ac6932/ros2param/ros2param/verb/dump.py#L40
https://github.com/ros2/ros2cli/issues/836
https://www.imdb.com/title/tt0800039/
https://learn.microsoft.com/en-us/visualstudio/debugger/using-dump-files?view=vs-2022

ROS2 Tutorial, Release October 03, 2023

24.7 Load parameters from a file with ros2 param load

Warning: To proceed, end the peanut_butter_falcon_quote_publisher_node Node with CTRL+C.

As in the prior step, suppose that we have a file peanut_butter_falcon_quote_publisher_node.yaml with the
parameters we love the most. What we can do with ros2 param load is load that file. Nicely predictable and under-
standable naming convention.

We can start the Node with the launch file

ros2 launch python_package_that_uses_parameters_and_launch_files \
peanut_butter_falcon_quote_publisher_launch.py

which, at the beginning, will have the parameters set in the _launch.py. We can then

cd ~/ros2_tutorial_workspace/src
ros2 param load \
/peanut_butter_falcon_quote_publisher_node \
peanut_butter_falcon_quote_publisher_node.yaml

which will return

Set parameter period successful
Set parameter philosopher_name successful
Set parameter quote successful
Set parameter topic_name successful
Set parameter use_sim_time successful

indicating that all parameters defined in the YAML were successfully loaded.

24.7. Load parameters from a file with ros2 param load 135

ROS2 Tutorial, Release October 03, 2023

136 Chapter 24. Inspecting parameters (ros2 param)

CHAPTER

TWENTYFIVE

FORBIDDEN TOPICS

Warning: Scary things are out there.

25.1 Doing all that C++ stuff with ament_cmake

25.1.1 Using this section

For the Python version of this tutorial, we held hands and walked slowly into the sunset while sipping some affordable
but tasty wine.

For the ament_cmake version of this tutorial, I’ll suppose you know all that and throw in extra info that I suppose is
useful. No hand-holding anymore.

Creating C++ Nodes (for ament_cmake)

The C++ binary block for ament_cmake

TL;DR

When adding a new Node in an existing CMakeLists.txt, you might benefit from using the following template.

Remember to:

1. Add ALL dependencies (including ROS2 ones) with find_package, if applicable.

find dependencies
find_package(ament_cmake REQUIRED)
find_package(rclcpp REQUIRED)

2. Change print_forever_node to the name of your Node.

3. Add all source files to add_executable.

4. Add all ROS2 dependencies of this binary to ament_target_dependencies.

5. Add any other (NOT ROS2) libraries to target_link_libraries.

137

ROS2 Tutorial, Release October 03, 2023

############################
CPP Binary Block [BEGIN]
vvvvvvvvvvvvvvvvvvvvvvvv
https://ros2-tutorial.readthedocs.io/en/latest/
While we cant use blocks https://cmake.org/cmake/help/latest/command/block.html
→˓#command:block
we use set--unset
set(RCLCPP_LOCAL_BINARY_NAME print_forever_node)

add_executable(${RCLCPP_LOCAL_BINARY_NAME}
src/print_forever_node_main.cpp
src/print_forever_node.cpp

)

ament_target_dependencies(${RCLCPP_LOCAL_BINARY_NAME}
rclcpp

)

target_link_libraries(${RCLCPP_LOCAL_BINARY_NAME}

)

target_include_directories(${RCLCPP_LOCAL_BINARY_NAME} PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>)

target_compile_features(${RCLCPP_LOCAL_BINARY_NAME} PUBLIC c_std_99 cxx_std_17)

install(TARGETS ${RCLCPP_LOCAL_BINARY_NAME}
DESTINATION lib/${PROJECT_NAME})

unset(RCLCPP_LOCAL_BINARY_NAME)
^^^^^^^^^^^^^^^^^^^^^^
CPP Binary Block [END]
##########################

Create the package

Warning: We’ll skip using the --node-name option to create the Node template, because, currently, it generates
a Node and a CMakeLists.txt different from my advice.

cd ~/ros2_tutorial_workspace/src
ros2 pkg create cpp_package_with_a_node \
--build-type ament_cmake \
--dependencies rclcpp

which outputs

138 Chapter 25. Forbidden topics

ROS2 Tutorial, Release October 03, 2023

ros2 pkg create output

going to create a new package
package name: cpp_package_with_a_node
destination directory: /home/murilo/ROS2_Tutorial/ros2_tutorial_workspace/src
package format: 3
version: 0.0.0
description: TODO: Package description
maintainer: ['murilo <murilomarinho@ieee.org>']
licenses: ['TODO: License declaration']
build type: ament_cmake
dependencies: ['rclcpp']
creating folder ./cpp_package_with_a_node
creating ./cpp_package_with_a_node/package.xml
creating source and include folder
creating folder ./cpp_package_with_a_node/src
creating folder ./cpp_package_with_a_node/include/cpp_package_with_a_node
creating ./cpp_package_with_a_node/CMakeLists.txt

[WARNING]: Unknown license 'TODO: License declaration'. This has been set in the␣
→˓package.xml, but no LICENSE file has been created.
It is recommended to use one of the ament license identitifers:
Apache-2.0
BSL-1.0
BSD-2.0
BSD-2-Clause
BSD-3-Clause
GPL-3.0-only
LGPL-3.0-only
MIT
MIT-0

Package-related sources

In this step, we’ll work on these.

cpp_package_with_a_node
CMakeLists.txt
include

cpp_package_with_a_node
.placeholder

package.xml
src

print_forever_node.cpp
print_forever_node.hpp
print_forever_node_main.cpp

The files already exist, we just need to modify them as follows

25.1. Doing all that C++ stuff with ament_cmake 139

ROS2 Tutorial, Release October 03, 2023

package.xml

The package.xml works the same way as in ament_python, with the exception of the two lines about ament_cmake
shown below.

package.xml

1 <?xml version="1.0"?>
2 <?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens=

→˓"http://www.w3.org/2001/XMLSchema"?>
3 <package format="3">
4 <name>cpp_package_with_a_node</name>
5 <version>0.0.0</version>
6 <description>TODO: Package description</description>
7 <maintainer email="murilomarinho@ieee.org">murilo</maintainer>
8 <license>TODO: License declaration</license>
9

10 <buildtool_depend>ament_cmake</buildtool_depend>
11

12 <depend>rclcpp</depend>
13

14 <test_depend>ament_lint_auto</test_depend>
15 <test_depend>ament_lint_common</test_depend>
16

17 <export>
18 <build_type>ament_cmake</build_type>
19 </export>
20 </package>

CMakeLists.txt

A one-size-fits-most solution is shown below. For each new Node we add a block to the CMakeLists.txt with the
following format.

CMakeLists.txt

1 cmake_minimum_required(VERSION 3.8)
2 project(cpp_package_with_a_node)
3

4 if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
5 add_compile_options(-Wall -Wextra -Wpedantic)
6 endif()
7

8 # find dependencies
9 find_package(ament_cmake REQUIRED)

10 find_package(rclcpp REQUIRED)
11

12 ############################
13 # CPP Binary Block [BEGIN] #
14 # vvvvvvvvvvvvvvvvvvvvvvvv #
15 # https://ros2-tutorial.readthedocs.io/en/latest/
16 # While we cant use blocks https://cmake.org/cmake/help/latest/command/block.html

→˓#command:block
(continues on next page)

140 Chapter 25. Forbidden topics

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

17 # we use set--unset
18 set(RCLCPP_LOCAL_BINARY_NAME print_forever_node)
19

20 add_executable(${RCLCPP_LOCAL_BINARY_NAME}
21 src/print_forever_node_main.cpp
22 src/print_forever_node.cpp
23

24)
25

26 ament_target_dependencies(${RCLCPP_LOCAL_BINARY_NAME}
27 rclcpp
28

29)
30

31 target_link_libraries(${RCLCPP_LOCAL_BINARY_NAME}
32

33)
34

35 target_include_directories(${RCLCPP_LOCAL_BINARY_NAME} PUBLIC
36 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
37 $<INSTALL_INTERFACE:include>)
38

39 target_compile_features(${RCLCPP_LOCAL_BINARY_NAME} PUBLIC c_std_99 cxx_std_17)
40

41 install(TARGETS ${RCLCPP_LOCAL_BINARY_NAME}
42 DESTINATION lib/${PROJECT_NAME})
43

44 unset(RCLCPP_LOCAL_BINARY_NAME)
45 # ^^^^^^^^^^^^^^^^^^^^^^ #
46 # CPP Binary Block [END] #
47 ##########################
48

49 if(BUILD_TESTING)
50 find_package(ament_lint_auto REQUIRED)
51 # the following line skips the linter which checks for copyrights
52 # comment the line when a copyright and license is added to all source files
53 set(ament_cmake_copyright_FOUND TRUE)
54 # the following line skips cpplint (only works in a git repo)
55 # comment the line when this package is in a git repo and when
56 # a copyright and license is added to all source files
57 set(ament_cmake_cpplint_FOUND TRUE)
58 ament_lint_auto_find_test_dependencies()
59 endif()
60

61 ament_package()

25.1. Doing all that C++ stuff with ament_cmake 141

ROS2 Tutorial, Release October 03, 2023

Making C++ ROS2 Nodes

(Murilo’s) rclcpp best practices

For each new C++ Node, we make three files following the style below.

For a Node called print_forever_node we have

1. src/print_forever_node.hpp with the Node’s class definition. In general, this is not exported to other pack-
ages, so it should not be in the package’s include folder.

2. src/print_forever_node.cpp with the Node’s class implementation.

3. src/print_forever_node_main.cpp with the Node’s main function implementation.

In this step, we’ll work on these.

cpp_package_with_a_node
CMakeLists.txt
include

cpp_package_with_a_node
.placeholder

package.xml
src

print_forever_node.cpp
print_forever_node.hpp
print_forever_node_main.cpp

These files do not exists, so we’ll create them.

folder

cd ~/ros2_tutorial_workspace/src/cpp_package_with_a_node
mkdir src

src/. . . _node.hpp

Similar to what we did in Python, we inherit from rclcpp::Node. Whatever is different is owing to differences in
languages.

print_forever_node.hpp

1 #pragma once
2

3 #include <memory>
4 #include <rclcpp/rclcpp.hpp>
5

6 /**
7 * @brief A ROS2 Node that prints to the console periodically, but in C++.
8 */
9 class PrintForeverNode: public rclcpp::Node

(continues on next page)

142 Chapter 25. Forbidden topics

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

10 {
11 private:
12 double timer_period_;
13 int print_count_;
14 //also equivalent to rclcpp::TimerBase::SharedPtr
15 std::shared_ptr<rclcpp::TimerBase> timer_;
16

17 void _timer_callback();
18 public:
19 PrintForeverNode();
20

21 };

src/. . . _node.cpp

The implementation has nothing special, just don’t forget to initialize the parent class, rclcpp::Node, with the name
of the node.

print_forever_node.cpp

1 #include "print_forever_node.hpp"
2

3 /**
4 * @brief PrintForeverNode::PrintForeverNode Default constructor.
5 */
6 PrintForeverNode::PrintForeverNode():
7 rclcpp::Node("print_forever_cpp"),
8 timer_period_(0.5),
9 print_count_(0)

10 {
11 //(Smart) pointers at the one thing that it doesn't matter much if they are not␣

→˓initialized in the member initializer list
12 //and this is a bit more readable.
13 timer_ = create_wall_timer(
14 std::chrono::milliseconds(long(timer_period_*1e3)),
15 std::bind(&PrintForeverNode::_timer_callback, this) //Note here the use␣

→˓of std::bind to build a single argument
16);
17 }
18

19 /**
20 * @brief PrintForeverNode::_timer_callback periodically prints class info using RCLCPP_

→˓INFO.
21 */
22 void PrintForeverNode::_timer_callback()
23 {
24 RCLCPP_INFO_STREAM(get_logger(),
25 std::string("Printed ") +
26 std::to_string(print_count_) +
27 std::string(" times.")
28);

(continues on next page)

25.1. Doing all that C++ stuff with ament_cmake 143

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

29 print_count_++;
30 }

src/. . . _main.cpp

Given that we are using rclcpp::spin(), there is nothing special here either. Just remember to not mess up the
std::make_shared and always use perfect forwarding. See Perfect forwarding. The rclcpp::spin() handles the
SIGINT when we, for example, press CTRL+C on the terminal. It is not perfect, but it does the trick for simple nodes
like this one.

print_forever_node_main.cpp

1 #include <rclcpp/rclcpp.hpp>
2

3 #include "print_forever_node.hpp"
4

5 int main(int argc, char** argv)
6 {
7 rclcpp::init(argc,argv);
8

9 try
10 {
11 auto node = std::make_shared<PrintForeverNode>();
12

13 rclcpp::spin(node);
14 }
15 catch (const std::exception& e)
16 {
17 std::cerr << std::string("::Exception::") << e.what();
18 }
19

20 return 0;
21 }

Add a .placeholder if your include/<PACKAGE_NAME> is empty

Warning: If you don’t do this and add this package as a git repository without any files on the include/, CMake
might return with an error when trying to compile your package.

cpp_package_with_a_node
CMakeLists.txt
include

cpp_package_with_a_node
.placeholder

package.xml
src

print_forever_node.cpp
(continues on next page)

144 Chapter 25. Forbidden topics

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

print_forever_node.hpp
print_forever_node_main.cpp

Empty directories will not be tracked by git. A file has to be added to the index. We can create an empty file in the
include folder as follows

cd ~/ros2_tutorial_workspace/src/cpp_package_with_a_node/src
touch include/cpp_package_with_a_node/.placeholder

Running a C++ Node

As simple as it has always been, see Running a node (ros2 run).

ros2 run cpp_package_with_a_node print_forever_node

which returns

[INFO] [1688620414.406930812] [print_forever_node]: Printed 0 times.
[INFO] [1688620414.906890884] [print_forever_node]: Printed 1 times.
[INFO] [1688620415.406907619] [print_forever_node]: Printed 2 times.
[INFO] [1688620415.906881003] [print_forever_node]: Printed 3 times.
[INFO] [1688620416.406900108] [print_forever_node]: Printed 4 times.
[INFO] [1688620416.906886691] [print_forever_node]: Printed 5 times.
[INFO] [1688620417.406881803] [print_forever_node]: Printed 6 times.
[INFO] [1688620417.906858551] [print_forever_node]: Printed 7 times.
[INFO] [1688620418.406894922] [print_forever_node]: Printed 8 times.

and we’ll use CTRL+C to stop the node, resulting in

[INFO] [1688620418.725674401] [rclcpp]: signal_handler(signum=2)

Creating C++ Libraries (for ament_cmake)

The C++ library block for ament_cmake

TL;DR

When your project exports a library, you might benefit from using the following template. Note that there is, in general,
no reason to define multiple libraries. A single shared library can hold all the content that you want to export from a
package, hence the library named ${PROJECT_NAME}.

Remember to

1. Add all exported headers to include/<PACKAGE_NAME> otherwise other packages cannot see it.

2. Add all source files of the library to add_library.

3. Add all ROS2 dependencies of the library to ament_target_dependencies.

4. Add ALL dependencies for which you used find_package to ament_export_dependencies, otherwise de-
pendencies might become complex for projects that use your library.

25.1. Doing all that C++ stuff with ament_cmake 145

https://stackoverflow.com/questions/115983/how-do-i-add-an-empty-directory-to-a-git-repository

ROS2 Tutorial, Release October 03, 2023

5. Add any other (NOT ROS2) libraries to target_link_libraries.

####################################
CPP Shared Library Block [BEGIN]
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
https://ros2-tutorial.readthedocs.io/en/latest/
The most common use case is to merge everything you need to export
into the same shared library called ${PROJECT_NAME}.
add_library(${PROJECT_NAME} SHARED

src/sample_class.cpp

)

ament_target_dependencies(${PROJECT_NAME}
rclcpp

)

target_include_directories(${PROJECT_NAME}
PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>)

ament_export_targets(export_${PROJECT_NAME} HAS_LIBRARY_TARGET)
ament_export_dependencies(

rclcpp
Eigen3
Qt5Core

)

target_link_libraries(${PROJECT_NAME}
Qt5::Core

)

install(
DIRECTORY include/
DESTINATION include
)

install(
TARGETS ${PROJECT_NAME}
EXPORT export_${PROJECT_NAME}
LIBRARY DESTINATION lib
ARCHIVE DESTINATION lib
RUNTIME DESTINATION bin
INCLUDES DESTINATION include
)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
CPP Shared Library Block [END]
##################################

146 Chapter 25. Forbidden topics

ROS2 Tutorial, Release October 03, 2023

The base package can be created with

cd ~/ros2_tutorial_workspace/src
ros2 pkg create cpp_package_with_a_library \
--build-type ament_cmake \
--dependencies rclcpp

resulting in the following output

ros2 pkg create output

ros2 pkg create cpp_package_with_a_library \
--build-type ament_cmake \
--dependencies rclcpp
going to create a new package
package name: cpp_package_with_a_library
destination directory: /home/murilo/ROS2_Tutorial/ros2_tutorial_workspace/src
package format: 3
version: 0.0.0
description: TODO: Package description
maintainer: ['murilo <murilomarinho@ieee.org>']
licenses: ['TODO: License declaration']
build type: ament_cmake
dependencies: ['rclcpp']
creating folder ./cpp_package_with_a_library
creating ./cpp_package_with_a_library/package.xml
creating source and include folder
creating folder ./cpp_package_with_a_library/src
creating folder ./cpp_package_with_a_library/include/cpp_package_with_a_library
creating ./cpp_package_with_a_library/CMakeLists.txt

[WARNING]: Unknown license 'TODO: License declaration'. This has been set in the␣
→˓package.xml, but no LICENSE file has been created.
It is recommended to use one of the ament license identitifers:
Apache-2.0
BSL-1.0
BSD-2.0
BSD-2-Clause
BSD-3-Clause
GPL-3.0-only
LGPL-3.0-only
MIT
MIT-0

25.1. Doing all that C++ stuff with ament_cmake 147

ROS2 Tutorial, Release October 03, 2023

Package-related sources

In this step, we’ll work on these.

cpp_package_with_a_library
CMakeLists.txt
include

cpp_package_with_a_library
sample_class.hpp

package.xml
src

sample_class.cpp
sample_class_local_node.cpp
sample_class_local_node.hpp
sample_class_local_node_main.cpp

The files already exist, we just need to modify them as follows

package.xml

Nothing new here.

package.xml

1 <?xml version="1.0"?>
2 <?xml-model href="http://download.ros.org/schema/package_format3.xsd" schematypens=

→˓"http://www.w3.org/2001/XMLSchema"?>
3 <package format="3">
4 <name>cpp_package_with_a_library</name>
5 <version>0.0.0</version>
6 <description>TODO: Package description</description>
7 <maintainer email="murilomarinho@ieee.org">murilo</maintainer>
8 <license>TODO: License declaration</license>
9

10 <buildtool_depend>ament_cmake</buildtool_depend>
11

12 <depend>rclcpp</depend>
13

14 <test_depend>ament_lint_auto</test_depend>
15 <test_depend>ament_lint_common</test_depend>
16

17 <export>
18 <build_type>ament_cmake</build_type>
19 </export>
20 </package>

148 Chapter 25. Forbidden topics

ROS2 Tutorial, Release October 03, 2023

CMakeLists.txt

A one-size-fits-most solution is shown below. We don’t need to add multiple libraries, so a single library can hold all
the content you might want to export. The user of the library will see it nicely split by your header files, so it will be as
neat as you make them.

Note that, because the local Node depends on the library being exported by this project, it needs to explicitly link to it.

CMakeLists.txt

1 cmake_minimum_required(VERSION 3.8)
2 project(cpp_package_with_a_library)
3

4 if(CMAKE_COMPILER_IS_GNUCXX OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")
5 add_compile_options(-Wall -Wextra -Wpedantic)
6 endif()
7

8 # find dependencies
9 find_package(ament_cmake REQUIRED)

10 find_package(rclcpp REQUIRED)
11 find_package(Eigen3 REQUIRED)
12 find_package(Qt5Core REQUIRED)
13

14 ####################################
15 # CPP Shared Library Block [BEGIN] #
16 # vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv #
17 # https://ros2-tutorial.readthedocs.io/en/latest/
18 # The most common use case is to merge everything you need to export
19 # into the same shared library called ${PROJECT_NAME}.
20 add_library(${PROJECT_NAME} SHARED
21 src/sample_class.cpp
22

23)
24

25 ament_target_dependencies(${PROJECT_NAME}
26 rclcpp
27

28)
29

30 target_include_directories(${PROJECT_NAME}
31 PUBLIC
32 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
33 $<INSTALL_INTERFACE:include>)
34

35 ament_export_targets(export_${PROJECT_NAME} HAS_LIBRARY_TARGET)
36 ament_export_dependencies(
37 rclcpp
38 Eigen3
39 Qt5Core
40

41)
42

43 target_link_libraries(${PROJECT_NAME}
44 Qt5::Core

(continues on next page)

25.1. Doing all that C++ stuff with ament_cmake 149

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

45

46)
47

48 install(
49 DIRECTORY include/
50 DESTINATION include
51)
52

53 install(
54 TARGETS ${PROJECT_NAME}
55 EXPORT export_${PROJECT_NAME}
56 LIBRARY DESTINATION lib
57 ARCHIVE DESTINATION lib
58 RUNTIME DESTINATION bin
59 INCLUDES DESTINATION include
60)
61 # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ #
62 # CPP Shared Library Block [END] #
63 ##################################
64

65 ############################
66 # CPP Binary Block [BEGIN] #
67 # vvvvvvvvvvvvvvvvvvvvvvvv #
68 # https://ros2-tutorial.readthedocs.io/en/latest/
69 # While we cant use blocks https://cmake.org/cmake/help/latest/command/block.html

→˓#command:block
70 # we use set--unset
71 set(RCLCPP_LOCAL_BINARY_NAME sample_class_local_node)
72

73 add_executable(${RCLCPP_LOCAL_BINARY_NAME}
74 src/sample_class_local_node_main.cpp
75 src/sample_class_local_node.cpp
76 src/sample_class.cpp
77

78)
79

80 ament_target_dependencies(${RCLCPP_LOCAL_BINARY_NAME}
81 rclcpp
82

83)
84

85 target_link_libraries(${RCLCPP_LOCAL_BINARY_NAME}
86 ${PROJECT_NAME}
87

88)
89

90 target_include_directories(${RCLCPP_LOCAL_BINARY_NAME} PUBLIC
91 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
92 $<INSTALL_INTERFACE:include>)
93

94 target_compile_features(${RCLCPP_LOCAL_BINARY_NAME} PUBLIC c_std_99 cxx_std_17)
95

(continues on next page)

150 Chapter 25. Forbidden topics

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

96 install(TARGETS ${RCLCPP_LOCAL_BINARY_NAME}
97 DESTINATION lib/${PROJECT_NAME})
98

99 unset(RCLCPP_LOCAL_BINARY_NAME)
100 # ^^^^^^^^^^^^^^^^^^^^^^ #
101 # CPP Binary Block [END] #
102 ##########################
103

104 if(BUILD_TESTING)
105 find_package(ament_lint_auto REQUIRED)
106 # the following line skips the linter which checks for copyrights
107 # comment the line when a copyright and license is added to all source files
108 set(ament_cmake_copyright_FOUND TRUE)
109 # the following line skips cpplint (only works in a git repo)
110 # comment the line when this package is in a git repo and when
111 # a copyright and license is added to all source files
112 set(ament_cmake_cpplint_FOUND TRUE)
113 ament_lint_auto_find_test_dependencies()
114 endif()
115

116 ament_package()

Library sources

In this step, we’ll work on these.

cpp_package_with_a_library
CMakeLists.txt
include

cpp_package_with_a_library
sample_class.hpp

package.xml
src

sample_class.cpp
sample_class_local_node.cpp
sample_class_local_node.hpp
sample_class_local_node_main.cpp

sample_class.hpp

A class that does a bunch of nothing, but that depends on Eigen3 and Qt, as an example.

sample_class.hpp

1 #pragma once
2

3 #include <ostream>
4

(continues on next page)

25.1. Doing all that C++ stuff with ament_cmake 151

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

5 #include <QString>
6 #include <eigen3/Eigen/Dense>
7

8 class SampleClass
9 {

10 private:
11 int a_private_member_;
12 const QString a_private_qt_string_;
13 const Eigen::MatrixXd a_private_eigen3_matrix_;
14

15 public:
16 SampleClass();
17

18 int get_a_private_member() const;
19 void set_a_private_member(int value);
20 std::string to_string() const;
21

22 static double sum_of_squares(const double&a, const double& b);
23 };
24

25 std::ostream& operator<<(std::ostream& os, const SampleClass& sc);

sample_class.cpp

sample_class.cpp

1 #include <cpp_package_with_a_library/sample_class.hpp>
2

3

4

5 /**
6 * @brief SampleClass::SampleClass the default constructor.
7 */
8 SampleClass::SampleClass():
9 a_private_qt_string_("I am a QString"),

10 a_private_eigen3_matrix_((Eigen::Matrix2d() << 1,2,3,4).finished())
11 {
12

13 }
14

15 /**
16 * @brief SampleClass::get_a_private_member.
17 * @return an int with the value of a_private_member_.
18 */
19 int SampleClass::get_a_private_member() const
20 {
21 return a_private_member_;
22 }
23

24 /**
25 * @brief SampleClass::set_a_private_member.

(continues on next page)

152 Chapter 25. Forbidden topics

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

26 * @param value The new value for a_private_member_.
27 */
28 void SampleClass::set_a_private_member(int value)
29 {
30 a_private_member_ = value;
31 }
32

33 /**
34 * @brief SampleClass::sum_of_squares.
35 * @param a The first number.
36 * @param b The second number.
37 * @return a*a + 2*a*b + b*b.
38 */
39 double SampleClass::sum_of_squares(const double &a, const double &b)
40 {
41 return a*a + 2*a*b + b*b;
42 }
43

44 /**
45 * @brief SampleClass::to_string converts a SampleClass to a std::string representation.
46 * @return a pretty(-ish) std::string representation of the object.
47 */
48 std::string SampleClass::to_string() const
49 {
50 std::stringstream ss;
51 ss << "Sample_Class:: " << std::endl <<
52 "a_private_member_ = " << std::to_string(a_private_member_) <<␣

→˓std::endl <<
53 "a_private_qt_string_ = " << a_private_qt_string_.toStdString() <<␣

→˓std::endl <<
54 "a_private_eigen3_matrix_ = " << a_private_eigen3_matrix_ << std::endl;
55 return ss.str();
56 }
57

58 /**
59 * @brief operator << the stream operator for SampleClass objects.
60 * @param [in/out] the std::ostream to be modified.
61 * @param [in] sc the SampleClass whose representation is to be streamed.
62 * @return the modified os with the added SampleClass string representation.
63 * @see SampleClass::to_string().
64 */
65 std::ostream &operator<<(std::ostream &os, const SampleClass &sc)
66 {
67 return os << sc.to_string();
68 }

25.1. Doing all that C++ stuff with ament_cmake 153

ROS2 Tutorial, Release October 03, 2023

Sources for a local node that uses the library

In this step, we’ll work on these.

cpp_package_with_a_library
CMakeLists.txt
include

cpp_package_with_a_library
sample_class.hpp

package.xml
src

sample_class.cpp
sample_class_local_node.cpp
sample_class_local_node.hpp
sample_class_local_node_main.cpp

Just in case you need to have a node, in the same package, that also uses the library exported by this package. Nothing
too far from what we have already done.

sample_class_local_node.cpp

sample_class.cpp

1 #include "sample_class_local_node.hpp"
2

3 /**
4 * @brief SampleClassLocalNode::SampleClassLocalNode Default constructor.
5 */
6 SampleClassLocalNode::SampleClassLocalNode():
7 rclcpp::Node("sample_class_local_node"),
8 timer_period_(0.5),
9 print_count_(0)

10 {
11 timer_ = create_wall_timer(
12 std::chrono::milliseconds(long(timer_period_*1e3)),
13 std::bind(&SampleClassLocalNode::_timer_callback, this)
14);
15 }
16

17 /**
18 * @brief SampleClassLocalNode::_timer_callback periodically prints class info using␣

→˓RCLCPP_INFO.
19 */
20 void SampleClassLocalNode::_timer_callback()
21 {
22 RCLCPP_INFO_STREAM(get_logger(),
23 std::string("sum_of_squares = ") +
24 std::to_string(SampleClass::sum_of_squares(print_count_,print_

→˓count_-5))
25);
26

(continues on next page)

154 Chapter 25. Forbidden topics

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

27 RCLCPP_INFO_STREAM(get_logger(),
28 sample_class_.to_string() +
29 std::to_string(print_count_) +
30 std::string(" times.")
31);
32 print_count_++;
33 }

sample_class_local_node.hpp

sample_class_local_node.cpp

1 #pragma once
2

3 #include <rclcpp/rclcpp.hpp>
4 #include <cpp_package_with_a_library/sample_class.hpp>
5

6 /**
7 * @brief A ROS2 Node that uses the SampleClass within the same package.
8 */
9 class SampleClassLocalNode: public rclcpp::Node

10 {
11 private:
12 SampleClass sample_class_;
13

14 double timer_period_;
15 int print_count_;
16 rclcpp::TimerBase::SharedPtr timer_;
17

18 void _timer_callback();
19 public:
20 SampleClassLocalNode();
21

22 };

sample_class_local_node_main.cpp

sample_class.cpp

1 #include <rclcpp/rclcpp.hpp>
2

3 #include "sample_class_local_node.hpp"
4

5 int main(int argc, char** argv)
6 {
7 rclcpp::init(argc,argv);
8

9 try
10 {
11 auto node = std::make_shared<SampleClassLocalNode>();

(continues on next page)

25.1. Doing all that C++ stuff with ament_cmake 155

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

12

13 rclcpp::spin(node);
14 }
15 catch (const std::exception& e)
16 {
17 std::cerr << std::string("::Exception::") << e.what();
18 }
19

20 return 0;
21 }

#vent Demystifying C++

Warning: Anything below this point is just me venting about topics that frequently come up when C++ is men-
tioned.

But, C++ is difficult

I think C++ organically follows Bushnell’s Law, adjusted for the topic

All the best [programming languages] are easy to learn and difficult to master. They should reward the
first quarter and the hundredth.

Beauty is in the eye of the beholder, but soon enough, if you’re doing anything state-of-the-art, you’ll hit performance
bottlenecks with Python (and friends) that will naturally pull you towards C++.

But with Python, we don’t need C++

This makes me feel like breaking the news to someone that Santa isn’t real, but just as an example, see numpy and
PyTorch.

Why is NumPy Fast?
[. . .] these things are taking place, of course, just “behind the scenes” in optimized, pre-compiled C code [. . .]

Using the PyTorch C++ Frontend
[. . .] While the primary interface to PyTorch naturally is Python, this Python API sits atop a substantial C++
codebase providing foundational data structures and functionality such as tensors and automatic differentiation.
[. . .]

The memefied version of this discussion is

156 Chapter 25. Forbidden topics

https://en.wikipedia.org/wiki/Bushnell%27s_Law
https://numpy.org/doc/stable/user/whatisnumpy.html
https://pytorch.org/tutorials/advanced/cpp_frontend.html

ROS2 Tutorial, Release October 03, 2023

Why use C++ if it sucks??

There’s much folklore around C++. “C is faster than C++.” “C++ is unsafe” (I’m looking at you, Rust). Anyhow, we’d
all benefit if people stopped spreading weird fallacies about the C++ language when the problems they have can usually
be attributed instead to a skill issue. Some quick info from Stroustrup’s FAQ, also known as the person who designed
and implemented the C++ programming language.

<begin Stroustrup's FAQ quote>

What is the difference between C and C++?
C++ is a direct descendant of C that retains almost all of C as a subset. C++ provides stronger type checking

25.1. Doing all that C++ stuff with ament_cmake 157

https://knowyourmeme.com/memes/skill-issue-simply-a-difference-in-skill
https://www.stroustrup.com/bs_faq.html

ROS2 Tutorial, Release October 03, 2023

than C and directly supports a wider range of programming styles than C. C++ is “a better C” in the sense
that it supports the styles of programming done using C with better type checking and more notational support
(without loss of efficiency). In the same sense, ANSI C is a better C than K&R C. In addition, C++ supports
data abstraction, object-oriented programming, and generic programming (see my books). I have never seen a
program that could be expressed better in C than in C++ (and I don’t think such a program could exist - every
construct in C has an obvious C++ equivalent). [. . .]

C++ is low-level?
No. C++ offers both low-level and high-level features. C++ has low-level parts, such as pointers, arrays, and
casts. These facilities are (almost identical to what C offers) are essential (in some form or other) for close-to-
the-hardware work. So, if you want low-level language facilities, yes C++ provides a well-tried set of facilities for
you. However, when you don’t want to use low-level features, you don’t need to use the C++ facilities (directly).
Instead, you can rely on higher-level facilities, including libraries. For example, if you don’t want to use arrays
and pointers, standard library strings and containers are (better) alternatives in many cases. If you use only
low-level facilities, you are almost certainly wasting time and complicating maintenance without performance
advantages (see Learning Standard C++ as a New Language). You may also be laying your systems open to
attacks (e.g. buffer overflows).

C++ too slow for low-level work?
No. If you can afford to use C, you can afford to use C++, even the higher-level facilities of C++ where you
need their functionality. See Abstraction and the C++ machine model and the ISO C++ standards committee’s
Technical Report on Performance.

C++ is useful only if you write truly object-oriented code?
No. That is, “no” for just about any reasonable definition of “object-oriented”. C++ provides support for a wide
variety of needs, not just for one style or for one kind of application. In fact, compared to C, C++ provides
more support for very simple programming tasks. For example, the standard library and other libraries radically
simplifies many otherwise tedious and error-prone tasks. C++ is widely used for huge applications but it also
provides benefits for even tiny programming tasks.

<end Stroustrup's FAQ quote>

But I hate pointers, and pointers hate me: The ballad of segmentation fault (core dumped)

In things entirely written in modern C++ (loosely C++11 and above, but C++14 and above for what I want to say here),
you shouldn’t see any new or any loose raw pointer modifiers *.

Use smart pointers. In general, std::shared_ptr and, if needed, std::unique_ptr.

If only using smart pointers you still manage to get a segmentation fault, then hats off to you.

But I can get segfaults with std::vector

As a successor of C, the standard library in C++ kept some of its predecessor’s behavior of not generating exceptions.

For example, with trigonometric functions in C++, the error handling is C-like

For instance getting the acos of 1.1, which is invalid, will fail silently in C++. We must check if the output is NaN, e.g.
with

#include <cmath>
#include <iostream>

int main()
{

(continues on next page)

158 Chapter 25. Forbidden topics

https://en.cppreference.com/w/cpp/memory
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/numeric/math/math_errhandling

ROS2 Tutorial, Release October 03, 2023

(continued from previous page)

auto a = std::acos(1.1);
std::cout << std::isnan(a) ? "the output was invalid but no exception was thrown " : a

→˓<< std::endl;
}

the same applies if we try to access beyond a vector’s limits with the good and old operator[]. Instead of doing that,
use the method .at(), which checks the bounds.

#include <iostream>
#include <vector>
#include <exception>

int main()
{
auto v = {1.0,2.0,3.0,4.0};
try
{
std::cout << v.at(22) << std::endl;

}
catch (const std::out_of_range& e)
{
std::cout << e.what() << std::endl;

}
}

As a conclusion, find the correct function/method or throw an exception yourself.

But C++ makes too many copies of objects: The sonata of “I don’t know perfect forwarding”

I see this claim all the time and it has many skill-issue-related causes, but basically, it shows up more frequently in the
constructors of std::vector and std::shared_ptr.

Let’s suppose that we have a class

class Potato{
private:
double size_;

public:
Potato(const double& size):
size_(size)
{};

};

for which we want to get a std::shared_ptr. Do not do this

auto potato_ptr = std::make_shared<Potato>(Potato(20.0));

Warning: This is not the only issue you can have by doing this. It can generate all sorts of issues, in particular
with classes that are not copyable.

25.1. Doing all that C++ stuff with ament_cmake 159

https://en.cppreference.com/w/cpp/container/vector/at
https://knowyourmeme.com/memes/skill-issue-simply-a-difference-in-skill

ROS2 Tutorial, Release October 03, 2023

because that will create one instance of Potato(20.0), just to copy it when creating the std::shared_ptr. Do this,
instead

auto potato_ptr = std::make_shared<Potato>(20.0);

by forwarding the argument to the constructor instead of calling it explicitly.

For everything else that you don’t want to copy, use std::move(), but you don’t see it that much unless you’re designing
a library.

160 Chapter 25. Forbidden topics

CHAPTER

TWENTYSIX

FREQUENTLY ASKED QUESTIONS (FAQ)

Note: Also known as, frequently made comments, things I’d like to mention, etc.

26.1 You got the name wrong, it’s ROS 2 not ROS2

Besides the humorous nature of the meme below and my love for the 1993’s blockbuster, this is an inconspicuous way
of showing, in every single section, that these tutorials are not official.

161

https://knowyourmeme.com/memes/see-nobody-cares

ROS2 Tutorial, Release October 03, 2023

26.2 It’s not Linux, it’s GNU/Linux: Keep all grievances in #vent

The wording on these tutorials is precise as possible. Note that some terms are commonly used with loose meanings,
but I hope that the message is still conveyed. This applies to the whole tutorial, given that even official sources are not
uniform in their terminology.

So, to end any deep discussions that might distract you from the point of these tutorials before they even start, I’ll let
you with the world-renowned Linux copypasta edited with what was actually said

I’d just like to interject for a moment. What you’re referring to as Linux, is in fact, GNU/Linux, or as
I’ve recently taken to calling it, GNU plus Linux. Linux is not an operating system [. . .]. Many computer
users run a modified version of the GNU system every day, without realizing it. Through a peculiar turn
of events, the version of GNU which is widely used today is often called “Linux,” and many of its users
are not aware that it is basically the GNU system, developed by the GNU Project. There really is a Linux,
and these people are using it, but it is just a part of the system they use.

Linux is the kernel: the program in the system that allocates the machine’s resources to the other programs
that you run. The kernel is an essential part of an operating system, but useless by itself; it can only
function in the context of a complete operating system. Linux is normally used in combination with the
GNU operating system: the whole system is basically GNU with Linux added, or GNU/Linux. All the
so-called “Linux” distributions are really distributions of GNU/Linux.

162 Chapter 26. Frequently asked questions (FAQ)

https://www.gnu.org/gnu/incorrect-quotation.html

ROS2 Tutorial, Release October 03, 2023

26.3 The difference between Python scripts and modules

According to The Python Tutorial on Modules, the definition of script and module is not disjoint, in fact, it is said that

[. . .] you can make the file usable as a script as well as an importable module [. . .]

In the official documentation, a Python script is defined as

[. . .] a [script is a] somewhat longer program, [for when] you are better off using a text editor to prepare
the input for the interpreter and running it with [a script] as input instead [of using an interactive instance
of the interpreter].

and a module is defined as

[A module is a file] to put definitions [. . .] and use them in a script or in an interactive instance of the
interpreter.

There are more profound differences in how the Python interpreter handles scripts and modules, but in the wild the the
difference is usually as I described in Terminology.

26.4 The difference between Python modules and packages

According to the Holy Book of Modules, a definition of packages is given en passant as follows

Suppose you want to design a collection of modules (a “package”) [. . .]

In practice, the line between modules and packages tends to be somewhat blurred. It could be a single folder with many
modules but at the same time they come up with namings such as submodule

Packages are a way of structuring Python’s module namespace [. . .]. For example, the module name A.B
designates a submodule named B in a package named A.

What most people want to say when they mention a package is, usually, either a folder with a __init__.py or a folder
with a setup.py that can be built into a wheel or something similar.

26.3. The difference between Python scripts and modules 163

https://docs.python.org/3.10/tutorial/modules.html
https://docs.python.org/3.10/tutorial/modules.html
https://docs.python.org/3.10/tutorial/modules.html

ROS2 Tutorial, Release October 03, 2023

164 Chapter 26. Frequently asked questions (FAQ)

CHAPTER

TWENTYSEVEN

WARNINGS

Warning: If you’re using macOS or Windows, this is NOT the guide for you. There might be a lot of overlap, but
none of the code shown here has been tested on those operating systems.

Warning: This project is under active development and is currently a draft.

165

ROS2 Tutorial, Release October 03, 2023

166 Chapter 27. Warnings

CHAPTER

TWENTYEIGHT

DISCLAIMERS

By reading and/or using this tutorial in total or in part, you agree to these terms.

Disclaimer

ANYTHING ON THIS TUTORIAL–EVEN THINGS THAT ACTUALLY WORK–IS ENTIRELY FICTIONAL.
SOME MEMES ARE ATTEMPTED. . . .POORLY. THE TUTORIAL CONTAINS MISPLACED MOVIE REFER-
ENCES AND DUE TO ITS LOW-HANGING FRUIT HUMOUR, IT SHOULD NOT BE READ BY ANYONE.

Disclaimer

All advice, comments, and terrible memes in this tutorial are my own and not endorsed by anyone or anything else
mentioned herein. It’s not even endorsed by me.

Disclaimer

THIS TUTORIAL AND RELATED SOFTWARE ARE PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPY-
RIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE AND/OR TUTORIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

167

	Ubuntu Terminal Basics
	Who cares about the terminal anyways, are you like 100 years old or something?
	The terminal
	Let’s use it. (!?)
	bash redirections
	Tab completion
	Be careful with sudo
	Be careful even when not using sudo
	File permissions
	nautilus: browsing files with a GUI

	Python Basics
	Installing Python on Ubuntu
	A quick Python check
	Some Python packages must be installed through apt
	When you want to isolate your environment, use venv
	Create a venv
	Activate a venv
	Deactivate a venv

	Installing libraries
	Removing libraries (installed with pip)
	When using pip, do NOT use sudo

	Editing Python source (with PyCharm)
	Installing PyCharm
	Create an alias for pycharm_ros2

	(Murilo’s) Python Best Practices
	Terminology
	Use a venv
	Minimalist package: something to start with
	Minimalist script
	Running a Python script on the terminal
	When using if __name__=="__main__":, just call the real main()
	It’s dangerous to go alone: Always wrap the contents of main function on a try–except block
	Minimalist class: Use classes profusely
	Not a matter of taste: Code style
	Take the (type) hint: Always use type hints
	Document your code with Docstrings
	Unit tests: always test your code
	Running the tests
	Start with use unittest
	Test them all
	The test’s main function

	Python’s asyncio
	Use a venv
	Create the minimalist_async package
	Create the async function
	Using await
	Using callback

	Making your Python package installable
	Use a venv
	The setup.py
	Installing wheel
	Installing the Python package
	Running the newly available scripts
	Importing things from the installed package
	Uninstalling packages

	ROS2 Installation
	Update apt packages
	Install a few pre-requisites
	Add ROS2 sources
	Install ROS2 packages
	Set up system environment to find ROS2
	Check if it works

	Terminator is life
	Shortcuts
	OK, but what if shortcuts scare me

	Workspace setup
	Setting up
	First build

	Create packages (ros2 pkg create)
	Creating a Python package (for ament_python)
	Creating a Python Node with a template (for ament_python)
	Always source after you build
	Running a node (ros2 run)
	Using PyCharm for ROS2 sources
	Running a Node from PyCharm
	What to do when PyCharm does not find the dependencies

	Creating a Python Node from scratch (for ament_python)
	Handling dependencies (package.xml)
	After you modify the workspace, build it once
	Creating the Node
	Making ros2 run work

	The Python Node, explained
	The imports
	Making a subclass of Node
	Use a Timer for periodic work (when using rclpy.spin())
	Where the ROS2 magic happens: rclpy.init() and rclpy.spin()
	Have a try-catch block for KeyboardInterrupt
	Document your code with Docstrings

	Creating a Python Library (for ament_python)
	The folders/files, Mason, what do they mean?
	Overview of the library
	Create the sample function
	Create the sample class
	Modify the __init__.py to export the symbols
	Modify the setup.py to export the packages
	Build and source

	Using a Python Library from another package (for ament_python)
	The sample Node
	Build and source
	Run

	Messages and Services (ros2 interface)
	Description
	Getting info on interfaces
	Messages
	Services

	Creating a dedicated package for custom interfaces
	Creating the package
	The package.xml dependencies
	The message folder
	The message file
	The service folder
	The service file
	The CMakeLists.txt directives
	What to do when adding new interfaces?
	Build and source
	Getting info on custom interfaces

	Publishers and Subscribers: using messages
	Create the package
	Overview
	Create the Node with a publisher
	Create the Node with a subscriber
	Update the setup.py
	Build and source
	Testing Publisher and Subscriber

	Inspecting topics (ros2 topic)
	Start a publisher
	Getting all topics with ros2 topic list
	grep is your new best friend
	Getting quick info with ros2 topic info
	Checking topic contents with ros2 topic echo
	grep is still your best friend
	Measuring publishing frequency with ros2 topic hz
	Stop the publisher
	Start the subscriber and get basic info
	Testing your subscribers with ros2 topic pub

	At your Service: Servers and Clients
	Create the package
	Overview
	Create the Node with a Service Server
	Service Clients
	Create the Node with a Service Client (using a callback)
	The Node
	Imports
	Instantiate a Service Client
	(Recommended) Wait for the Service Server to be available
	Instantiate a Future as a class attribute
	Instantiate a Timer
	Service Clients use <srv>.Request()
	Make service calls with call_async()
	The Future callback

	Update the setup.py
	Build and source
	Testing Service Server and Client

	Inspecting services (ros2 service)
	Start a service server
	Getting all services with ros2 service list
	Testing your service servers with ros2 service call
	Testing your service clients???

	Parameters: creating configurable Nodes
	Create the package
	Overview
	Create the Node using parameters
	Don’t forget to declare the parameter!
	One-off parameters
	Continuously-obtained parameters
	Truly configurable: using _launch.py files
	(Once) create the launch folder
	Create the launch file
	The setup.py
	Build and source

	Launch configurable Nodes (ros2 launch)
	Inspecting parameters (ros2 param)
	Launching the Node with parameters
	List-up parameters with ros2 param list
	Obtain parameters with ros2 param get
	Let’s check the output of the Node
	Assign values to parameters with ros2 param set
	Save parameters to a file with ros2 param dump
	Load parameters from a file with ros2 param load

	☠️Forbidden topics☠️
	Doing all that C++ stuff with ament_cmake
	Using this section
	Creating C++ Nodes (for ament_cmake)
	Create the package
	Package-related sources
	Making C++ ROS2 Nodes
	Add a .placeholder if your include/<PACKAGE_NAME> is empty
	Running a C++ Node

	Creating C++ Libraries (for ament_cmake)
	Package-related sources
	Library sources
	Sources for a local node that uses the library

	#vent Demystifying C++
	But, C++ is difficult
	But with Python, we don’t need C++
	Why use C++ if it sucks??
	But I hate pointers, and pointers hate me: The ballad of segmentation fault (core dumped)
	But I can get segfaults with std::vector
	But C++ makes too many copies of objects: The sonata of “I don’t know perfect forwarding”

	Frequently asked questions (FAQ)
	You got the name wrong, it’s ROS 2 not ROS2
	It’s not Linux, it’s GNU/Linux: Keep all grievances in #vent
	The difference between Python scripts and modules
	The difference between Python modules and packages

	Warnings
	Disclaimers

